10 research outputs found

    Introgression of Brown Norway \u3cem\u3eCYP4A\u3c/em\u3e Genes onto the Dahl Salt-Sensitive Background Restores Vascular Function in SS-5\u3csup\u3eBN\u3c/sup\u3e Consomic Rats

    Get PDF
    The present study tested the hypothesis that the Dahl SS (salt-sensitive) rat has vascular dysfunction due, in part, to the up-regulation of the CYP4A/20-HETE (cytochrome P450 ω-hydroxylase 4A)/20-hydroxyeicosatetraenoic acid) system. To assess the role of vascular 20-HETE, SS rats were compared with SS-5BN consomic rats, carrying CYP4A alleles on chromosome 5 from the normotensive BN (Brown Norway) introgressed on to the SS genetic background. Cerebral arteries from SS-5BN rats had less CYP4A protein than arteries from SS rats fed either NS (normal-salt, 0.4% NaCl) or HS (high-salt, 4.0% NaCl) diet. ACh (acetylcholine)-induced dilation of MCAs (middle cerebral arteries) from SS and SS-5BN rats was present in SS-5BN rats fed on either an NS or HS diet, but absent in SS rats. In SS rats fed on either diet, ACh-induced dilation was restored by acute treatment with the CYP4A inhibitor DDMS (N-methyl-sulfonyl-12,12-dibromododec-11-enamide) or the 20-HETE antagonist 20-HEDE [20-hydroxyeicosa-6(Z),15(Z)-dienoic acid]. The restored response to ACh in DDMS-treated SS rats was inhibited by L-NAME (NGnitro-L-arginine methyl ester) and unaffected by indomethacin or MS-PPOH [N-methylsulfonyl-6-(2-propargyloxyphenyl)hexanamide]. Vascular relaxation responses to the NO donor C5FeN6Na2O were intact in both SS and SS-5BN rats and unaffected by the acute addition of DDMS, indicating that the vascular dysfunction of the SS rat is due to a reduced bioavailability of NO instead of failure of the VSMCs (vascular smooth muscle cells) to respond to the vasodilator. Superoxide levels in cerebral arteries of SS-5BN rats [evaluated semi-quantitatively by DHE (dihydroethidium) fluorescence] were lower than those in the arteries of SS rats. These findings indicate that SS rats have an up-regulation of the CYP4A/20-HETE pathway resulting in elevated ROS (reactive oxygen species) and reduced NO bioavailability causing vascular dysfunction

    Evaluation of Vascular Control Mechanisms Utilizing Video Microscopy of Isolated Resistance Arteries of Rats

    Get PDF
    This protocol describes the use of in vitro television microscopy to evaluate vascular function in isolated cerebral resistance arteries (and other vessels), and describes techniques for evaluating tissue perfusion using Laser Doppler Flowmetry (LDF) and microvessel density utilizing fluorescently labeled Griffonia simplicifolia (GS1) lectin. Current methods for studying isolated resistance arteries at transmural pressures encountered in vivo and in the absence of parenchymal cell influences provide a critical link between in vivo studies and information gained from molecular reductionist approaches that provide limited insight into integrative responses at the whole animal level. LDF and techniques to selectively identify arterioles and capillaries with fluorescently-labeled GS1 lectin provide practical solutions to enable investigators to extend the knowledge gained from studies of isolated resistance arteries. This paper describes the application of these techniques to gain fundamental knowledge of vascular physiology and pathology in the rat as a general experimental model, and in a variety of specialized genetically engineered designer rat strains that can provide important insight into the influence of specific genes on important vascular phenotypes. Utilizing these valuable experimental approaches in rat strains developed by selective breeding strategies and new technologies for producing gene knockout models in the rat, will expand the rigor of scientific premises developed in knockout mouse models and extend that knowledge to a more relevant animal model, with a well understood physiological background and suitability for physiological studies because of its larger size

    Role of Vascular Reactive Oxygen Species in Regulating Cytochrome P450-4A Enzyme Expression in Dahl Salt-Sensitive Rats

    Get PDF
    Objective The potential contribution of CYP4A enzymes to endothelial dysfunction in Dahl salt-sensitive rats was determined by comparison to SS-5BN consomic rats having chromosome 5 carrying CYP4A alleles from the BN rat introgressed into the SS genetic background. Methods The following experiments were performed in cerebral arteries from HS-fed SS and SS-5BN rats ± the SOD inhibitor DETC and/or the superoxide scavenger Tempol: (i) endothelial function was determined via video microscopy ± acute addition of the CYP4A inhibitor DDMS or Tempol; (ii) vascular oxidative stress was assessed with DHE fluorescence ± acute addition of DDMS, l-NAME, or PEG-SOD; and (iii) CYP4A protein levels were compared by western blotting. Results In DETC-treated SS-5BN and HS-fed SS rats, (i) DDMS or Tempol ameliorated vascular dysfunction, (ii) DDMS reduced vascular oxidative stress to control levels, (iii) chronic Tempol treatment reduced vascular CYP4A protein expression, and (iv) combined treatment with Tempol and l-NAME prevented the reduction in CYP4A protein expression in MCA of HS-fed SS rats. Conclusion The CYP4A pathway plays a role in vascular dysfunction in SS rats and there appears to be a direct role of reduced NO availability due to salt-induced oxidant stress in upregulating CYP4A enzyme expression

    Role of the CYP4A/20-HETE Pathway in Vascular Dysfunction of the Dahl Salt-sensitive Rat

    No full text
    20-HETE (20-hydroxyeicosatetraenoic acid), a vasoconstrictor metabolite of arachidonic acid formed through the action of CYP4A (cytochrome P450-4A) in vascular smooth muscle cells, has been implicated in the development of hypertension and vascular dysfunction. There have been a number of reports in human subjects demonstrating an association between elevated urinary excretion of 20-HETE and hypertension, as well as increased 20-HETE production and vascular dysfunction. The Dahl SS (salt-sensitive) rat is a genetic model of salt-sensitive hypertension that exhibits vascular dysfunction, even when maintained on a normal-salt diet and before the development of hypertension. This mini-review highlights our current research on the role of CYP4A and 20-HETE in the vascular dysfunction of the Dahl SS rat. In our studies, the SS rat is compared with the consomic SS-5BN rat, having chromosome 5 from the salt-resistant Brown Norway rat (carrying all CYP4A genes) introgressed on to the SS genetic background. Our laboratory has demonstrated restoration of normal vascular function in the SS rat with inhibition of the CYP4A/20-HETE pathway, suggesting a direct role for this pathway in the vascular dysfunction in this animal model. Our studies have also shown that the SS rat has an up-regulated CYP4A/20-HETE pathway within their cerebral vasculature compared with the SS-5BN consomic rat, which causes endothelial dysfunction through the production of ROS (reactive oxygen species). Our data shows that ROS influences the expression of the CYP4A/20-HETE pathway in the SS rat in a feed-forward mechanism whereby elevated ROS stimulates production of 20-HETE. The presence of this vicious cycle offers a possible explanation for the spiralling effects of elevated 20-HETE on the development of vascular dysfunction in this animal model

    Role of Physical Therapists in the Management of Individuals at Risk for or Diagnosed With Venous Thromboembolism: Evidence-Based Clinical Practice Guideline 2022

    No full text
    No matter the practice setting, physical therapists work with patients who are at risk for or who have a history of venous thromboembolism (VTE). In 2016, the first clinical practice guideline (CPG) addressing the physical therapist management of VTE was published with support by the American Physical Therapy Association’s Academy of Cardiovascular and Pulmonary Physical Therapy and Academy of Acute Care, with a primary focus on lower extremity deep vein thrombosis (DVT). This CPG is an update of the 2016 CPG and contains the most current evidence available for the management of patients with lower extremity DVT and new key action statements (KAS), including guidance on upper extremity DVT, pulmonary embolism, and special populations. This document will guide physical therapist practice in the prevention of and screening for VTE and in the management of patients who are at risk for or who have been diagnosed with VTE. Through a systematic review of published studies and a structured appraisal process, KAS were written to guide the physical therapist. The evidence supporting each action was rated, and the strength of statement was determined. Clinical practice algorithms based on the KAS were developed that can assist with clinical decision-making. Physical therapists, along with other members of the health care team, should implement these KAS to decrease the incidence of VTE, improve the diagnosis and acute management of VTE, and reduce the long-term complications of VTE

    Clinical Update for Physical Therapists: Coagulopathy and COVID-19

    Get PDF
    Physical therapists have a unique role in both prevention of venous thromboembolism (VTE) through the promotion of early mobility and physical activity and diagnosis through discovery of signs and symptoms of VTE. This Perspective updates clinicians on the latest information regarding pathophysiology of coagulopathy associated with COVID-19 and applies VTE clinical practice guidelines to COVID-19 in order to provide guidance on physical therapist management

    [The effect of low-dose hydrocortisone on requirement of norepinephrine and lactate clearance in patients with refractory septic shock].

    No full text
    corecore