49 research outputs found

    Distribution of Patterned Ground and Surficial Deposits on a Debris-covered Glacier Surface in Mullins Valley and Upper Beacon Valley, Antarctica

    Get PDF
    Beacon Valley is located in the western Dry Valleys, Antarctica, adjacent to the East Antarctic Ice Sheet (EAIS). The surficial material on the floor of Beacon Valley is segmented into large polygonal landforms separated by trenches. Buried beneath the polygons and surficial material is massive ground ice. One hypothesis is that the buried ice in upper Beacon Valley is glacier ice originating from local debris-covered glaciers. The networks of polygons and trenches form as the buried ice undergoes thermal contraction and sublimation. Contraction cracks that penetrate the surficial material and buried ice in Beacon Valley contain Late Miocene age volcanic ashes. The ashes postdate the buried ice. The preservation of such old ice implies a continuous extreme polar condition in Beacon Valley since late Miocene time. An alternative explanation is that the buried ice in Beacon Valley is modem ground ice that formed from percolation of melted, wind-blown snow that subsequently froze within the sediment mantle. Polygonal landforms would result from the seasonal freeze-thaw of the modem ground ice and surficial material. Continual freeze-thaw action, or cryoturbation, would create a mass of coalesced, modern ice lenses covered with older sediment. The buried ice in this case could be young, and hence could not be used to imply stable climatic conditions in Beacon Valley since the late Miocene. Polygons cover the surface of a debris-covered glacier that fills part of upper Beacon Valley and Mullins Valley. A survey of the debris-covered glacier surface indicates that polygons mature with distance from the equilibrium line. The polygon morphology highlights the transport path of the buried ice in upper Beacon Valley, which can be sourced to the cirque (accumulation zone) at the head of Mullins Valley. The buried ice in upper Beacon Valley is part of a coherent, massive ice body of glacial origin. A gray diamicton is draped over the buried ice. It has textural and weathering characteristics akin to englacial, buried ice sediment. This diamicton is classified as a till that formed from sublimation of buried ice. The sublimation till (28% sand, 69% gravel, and 3% mud) is sorted by narrow contraction cracks in the buried ice that results in sand wedge deposits (83% sand, 11% gravel, and 6% mud). The grain-sizes that comprise sublimation till and sand wedges indicate that sediment is initially derived from sublimation of the buried ice. Deep polygon trenches develop over thermal contraction cracks in the buried ice, and create traps for wind-blown sediment (reworked sublimation till, sand wedge sediment and volcanic ash.) The tops of some contraction cracks were void of sediment, indicative of a sediment starvation. In this case, any primary volcanic ashfall could descend directly into active sand wedges. As sublimation occurs, sand wedges containing volcanic ash can slump over the sublimation till and buried ice. The stratigraphy of massive weathered sand, with stringers of volcanic ash, resting on sublimation till and buried ice is widespread in upper Beacon Valley. Because the contraction cracks and sand wedges are secondary to the buried ice, the ashes contained in them can afford a minimum age for the buried ice. This study supports the concept of the ash chronology previously used (Sugden et al., 1995) to date the buried ice at late Miocene age, and argues for persistent polar conditions in Beacon Valley since that time

    Wiggle-match radiocarbon dating of the Taupo eruption

    Get PDF
    The Taupo eruption deposit is an isochronous marker bed that spans much of New Zealand’s North Island and pre-dates human arrival. Holdaway et al. (2018, Nature Comms 9, 4110) propose that the current Taupo eruption date is inaccurate and that the eruption occurred “…decades to two centuries…” after the published wiggle-match estimate of 232 ± 10 CE (2 s.d.) derived from a tanekaha (Phyllocladus trichomanoides) tree at the Pureora buried forest site (Hogg et al. 2012, The Holocene 22, 439-449). Holdaway et al. (2018) propose that trees growing at Pureora (and other near-source areas) that were killed and buried by the climactic ignimbrite event were affected by ¹⁴C-depleted (magmatic) CO₂. Holdaway et al.'s (2018) proposal utilises a wide range of published ¹⁴C data, but their work results in assertions that are implausible. Four parts to their hypothesis are considered here

    The state of the Martian climate

    Get PDF
    60°N was +2.0°C, relative to the 1981–2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes

    State of the climate in 2018

    Get PDF
    In 2018, the dominant greenhouse gases released into Earth’s atmosphere—carbon dioxide, methane, and nitrous oxide—continued their increase. The annual global average carbon dioxide concentration at Earth’s surface was 407.4 ± 0.1 ppm, the highest in the modern instrumental record and in ice core records dating back 800 000 years. Combined, greenhouse gases and several halogenated gases contribute just over 3 W m−2 to radiative forcing and represent a nearly 43% increase since 1990. Carbon dioxide is responsible for about 65% of this radiative forcing. With a weak La Niña in early 2018 transitioning to a weak El Niño by the year’s end, the global surface (land and ocean) temperature was the fourth highest on record, with only 2015 through 2017 being warmer. Several European countries reported record high annual temperatures. There were also more high, and fewer low, temperature extremes than in nearly all of the 68-year extremes record. Madagascar recorded a record daily temperature of 40.5°C in Morondava in March, while South Korea set its record high of 41.0°C in August in Hongcheon. Nawabshah, Pakistan, recorded its highest temperature of 50.2°C, which may be a new daily world record for April. Globally, the annual lower troposphere temperature was third to seventh highest, depending on the dataset analyzed. The lower stratospheric temperature was approximately fifth lowest. The 2018 Arctic land surface temperature was 1.2°C above the 1981–2010 average, tying for third highest in the 118-year record, following 2016 and 2017. June’s Arctic snow cover extent was almost half of what it was 35 years ago. Across Greenland, however, regional summer temperatures were generally below or near average. Additionally, a satellite survey of 47 glaciers in Greenland indicated a net increase in area for the first time since records began in 1999. Increasing permafrost temperatures were reported at most observation sites in the Arctic, with the overall increase of 0.1°–0.2°C between 2017 and 2018 being comparable to the highest rate of warming ever observed in the region. On 17 March, Arctic sea ice extent marked the second smallest annual maximum in the 38-year record, larger than only 2017. The minimum extent in 2018 was reached on 19 September and again on 23 September, tying 2008 and 2010 for the sixth lowest extent on record. The 23 September date tied 1997 as the latest sea ice minimum date on record. First-year ice now dominates the ice cover, comprising 77% of the March 2018 ice pack compared to 55% during the 1980s. Because thinner, younger ice is more vulnerable to melting out in summer, this shift in sea ice age has contributed to the decreasing trend in minimum ice extent. Regionally, Bering Sea ice extent was at record lows for almost the entire 2017/18 ice season. For the Antarctic continent as a whole, 2018 was warmer than average. On the highest points of the Antarctic Plateau, the automatic weather station Relay (74°S) broke or tied six monthly temperature records throughout the year, with August breaking its record by nearly 8°C. However, cool conditions in the western Bellingshausen Sea and Amundsen Sea sector contributed to a low melt season overall for 2017/18. High SSTs contributed to low summer sea ice extent in the Ross and Weddell Seas in 2018, underpinning the second lowest Antarctic summer minimum sea ice extent on record. Despite conducive conditions for its formation, the ozone hole at its maximum extent in September was near the 2000–18 mean, likely due to an ongoing slow decline in stratospheric chlorine monoxide concentration. Across the oceans, globally averaged SST decreased slightly since the record El Niño year of 2016 but was still far above the climatological mean. On average, SST is increasing at a rate of 0.10° ± 0.01°C decade−1 since 1950. The warming appeared largest in the tropical Indian Ocean and smallest in the North Pacific. The deeper ocean continues to warm year after year. For the seventh consecutive year, global annual mean sea level became the highest in the 26-year record, rising to 81 mm above the 1993 average. As anticipated in a warming climate, the hydrological cycle over the ocean is accelerating: dry regions are becoming drier and wet regions rainier. Closer to the equator, 95 named tropical storms were observed during 2018, well above the 1981–2010 average of 82. Eleven tropical cyclones reached Saffir–Simpson scale Category 5 intensity. North Atlantic Major Hurricane Michael’s landfall intensity of 140 kt was the fourth strongest for any continental U.S. hurricane landfall in the 168-year record. Michael caused more than 30 fatalities and 25billion(U.S.dollars)indamages.InthewesternNorthPacific,SuperTyphoonMangkhutledto160fatalitiesand25 billion (U.S. dollars) in damages. In the western North Pacific, Super Typhoon Mangkhut led to 160 fatalities and 6 billion (U.S. dollars) in damages across the Philippines, Hong Kong, Macau, mainland China, Guam, and the Northern Mariana Islands. Tropical Storm Son-Tinh was responsible for 170 fatalities in Vietnam and Laos. Nearly all the islands of Micronesia experienced at least moderate impacts from various tropical cyclones. Across land, many areas around the globe received copious precipitation, notable at different time scales. Rodrigues and Réunion Island near southern Africa each reported their third wettest year on record. In Hawaii, 1262 mm precipitation at Waipā Gardens (Kauai) on 14–15 April set a new U.S. record for 24-h precipitation. In Brazil, the city of Belo Horizonte received nearly 75 mm of rain in just 20 minutes, nearly half its monthly average. Globally, fire activity during 2018 was the lowest since the start of the record in 1997, with a combined burned area of about 500 million hectares. This reinforced the long-term downward trend in fire emissions driven by changes in land use in frequently burning savannas. However, wildfires burned 3.5 million hectares across the United States, well above the 2000–10 average of 2.7 million hectares. Combined, U.S. wildfire damages for the 2017 and 2018 wildfire seasons exceeded $40 billion (U.S. dollars)

    Palaeocirculation across New Zealand during the last glacial maximum at similar to 21 ka

    No full text
    What circulation pattern drove Southern Alps glacial advances at similar to 21 ka? Late 20th century glacial advances in New Zealand are commonly attributed to a dual precipitation increase and cooler than normal temperatures associated with enhanced westerly flow that occur under synoptic pressure patterns termed 'zonal' regimes (Kidson, 2000). But was the circulation pattern that supported major Southern Alps glacial advances during the global LGM similar to the modern analog? Here, a Regional Climate Regime Classification (RCRC) time slice was used to infer past circulation for New Zealand during the LGM at similar to 21 ka. Palaeoclimate information that supported the construction of the similar to 21 ka time slice was derived from the NZ-INTIMATE Climate Event Stratigraphy (CES), one new Auckland maar proxy record, and additional low-resolution data sourced from the literature.The terrestrial evidence at similar to 21 ka implicates several possibilities for past circulation, depending on how interpretations for some proxies are made. The interpretation considered most tenable for the LGM, based on the agreement between terrestrial evidence, marine reconstructions and palaeoclimate model results is an 'anticyclonic/zonal' circulation regime characterized by increased influences from blocking 'highs' over the South Island during winter and an increase in zonal and trough synoptic types (with southerly to westerly quarter wind flow) during summer. These seasonal circulation traits would have generated lower mean annual temperatures, cooler than normal summer temperatures, and overall lower mean annual precipitation for New Zealand (particularly in the western South Island) at similar to 21 ka.The anticyclonic/zonal time slice reconstruction presented in this study has different spatial traits than the late 20th Century and the early Little Ice Age signatures, suggesting more than one type of regional circulation pattern can drive Southern Alps glacial activity. This finding lends support to the hypothesis that temperature over precipitation change is more important as the primary modulator of Southern Alps ice advances. The RCRC approach also demonstrates some subtle advantages of integrating multiproxy data within a palaeocirculation context for New Zealand, notably because this reconstruction technique enables direct comparisons to coarsely resolved palaeoclimate model outputs that do not have downscaled information. (C) 2011 Elsevier Ltd. All rights reserved

    Coincident evolution of glaciers and ice-marginal proglacial lakes across the Southern Alps, New Zealand: Past, present and future

    No full text
    Global glacier mass loss is causing expansion of proglacial landscapes and producing meltwater that can become impounded as lakes within natural topographic depressions or ‘overdeepenings’. It is important to understand the evolution of these proglacial landscapes for water resources, natural hazards and ecosystem services. In this study we (i) overview contemporary loss of glacier ice across the Southern Alps of New Zealand, (ii) analyse ice-marginal lake development since the 1980s, (iii) utilise modelled glacier ice thickness to suggest the position and size of future lakes, and (iv) employ a large-scale glacier evolution model to suggest the timing of future lake formation and future lake expansion rate. In recent decades, hundreds of Southern Alps glaciers have been lost and those remaining have fragmented both by separation of tributaries and by detachment of ablation zones. Glaciers with ice-contact margins in proglacial lakes (n > 0.1 km2 = 20 in 2020) have experienced the greatest terminus retreat and typically twice as negative mass balance compared to similar-sized land-terminating glaciers. Our analysis indicates a positive relationship between mean glacier mass balance and rate of lake growth (R2 = 0.34) and also with length of an ice-contact lake boundary (R2 = 0.44). We project sustained and relatively homogenous glacier volume loss for east-draining basins but in contrast a heterogeneous pattern of volume loss for west-draining basins. Our model results show that ice-marginal lakes will increase in combined size by ~150% towards 2050 and then decrease to 2100 as glaciers disconnect from them. Overall, our findings should inform (i) glacier evolution models into which ice-marginal lake effects need incorporating, (ii) studies of rapid landscape evolution and especially of meltwater and sediment delivery, and (iii) considerations of future meltwater supply and water quality.ISSN:0921-818
    corecore