16 research outputs found

    Antibody responses to the full-length VAR2CSA and its DBL domains in Cameroonian children and teenagers

    Get PDF
    Additional file 2. IgG levels to VAR2CSA domains in 10–15 year old Cameroonian girls living in Ngali II and Ntouessong villages. IgG levels to VAR2CSA DBL domains and full-length protein (FV2) were measured in 11–15 year old girls residing in Ngali II and Ntouessong villages. DBL1 domain was from 3D7 strain and all the other proteins from FCR3 parasite strain. Median MFI and Inter-Quartile Range (IQR) are plotted

    Skin microbiome profile in people living with HIV/AIDS in Cameroon

    Get PDF
    The presence of pathogens and the state of diseases, particularly skin diseases, may alter the composition of human skin microbiome. HIV infection has been reported to impair gut microbiome that leads to severe consequences. However, with cutaneous manifestations, that can be life-threatening, due to the opportunistic pathogens, little is known whether HIV infection might influence the skin microbiome and affect the skin homeostasis. This study catalogued the profile of skin microbiome of healthy Cameroonians, at three different skin sites, and compared them to the HIV-infected individuals. Taking advantage on the use of molecular assay coupled with next-generation sequencing, this study revealed that alpha-diversity of the skin microbiome was higher and beta-diversity was altered significantly in the HIV-infected Cameroonians than in the healthy ones. The relative abundance of skin microbes such as Micrococcus and Kocuria species was higher and Cutibacterium species was significantly lower in HIV-infected people, indicating an early change in the human skin microbiome in response to the HIV infection. This phenotypical shift was not related to the number of CD4 T cell count thus the cause remains to be identified. Overall, these data may offer an important lead on the role of skin microbiome in the determination of cutaneous disease state and the discovery of safe pharmacological preparations to treat microbial-related skin disorders

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    The Effects of HIV Infection on the Immune Response to Malaria Among Pregnant Women in Kumba, Southwest Cameroon: Protocol for a Cross-sectional Study

    No full text
    BackgroundMalaria and HIV, 2 of the world's deadliest diseases, share a lot of territory in sub-Saharan Africa. ObjectiveThis study seeks to investigate the effect of HIV on the immune response to malaria infection among pregnant women in Kumba in the southwest region (SWR) of Cameroon. The study aims to determine the prevalence of malaria infection, assess the occurrence of Plasmodium falciparum genetic diversity, and evaluate the antibody (immunoglobulin [Ig]G and IgM: apical membrane antigen-1 [AMA1], merozoite surface protein [MSP]1, MSP2, MSP3, and erythrocyte-binding antigen [EBA]175) and cytokine (interleukin [IL]-10, tumor necrosis factor alpha [TNF-α], and interferon gamma [IFNγ]) response to malaria infection among pregnant women with and without HIV in Kumba. MethodsThe study will be a hospital-based cross-sectional design that will run from March 2022 to February 2023. It will recruit pregnant women with and without HIV who are in their third trimester of pregnancy. The study will be carried out in 5 health institutions in Kumba: General Hospital Kumba, Presbyterian Hospital Kumba, District Hospital Kumba-town, Kossala Integrated Health Center Kumba, and Catholic Hospital Kumba. About 3 mL of the mother’s venous blood, placental blood, and baby cord blood will be collected from each pregnant women at the point of delivery. Microscopy, rapid diagnostic tests (RDTs), and nested polymerase chain reaction (PCR) will be performed to identify the malaria parasite in all the samples, and nested PCR targeting the different genetic diversity markers for P. falciparum will also be performed. Furthermore, sequencing will be performed to study the nucleotide sequence of different alleles, and the genetic diversity of the alleles responsible for malaria infection among pregnant women will be assessed. A multiplex assay will be conducted to analyze the peripheral blood plasma and cord blood plasma for the cytokine and total antibody response to malaria infection among pregnant women with and without HIV. The questionnaire for data collection will be pretested at the Kumba District Hospital, and ethical clearance will be obtained from the University of Buea and the Regional Delegation of Public Health for the SWR. Data will be analyzed using SPSS Statistics and STATA. All P values <.05 will be considered statistically significant. BioEdit 7.0.0 software will be used to align the nucleotide sequences of different genes after sequencing. Phylogenetic tree searching will be conducted using the maximum-likelihood (ML) method in MEGA V6.0. ResultsThe project started in March 2022 and will end in February 2023. Presently, three-fourth of the project funding has been disbursed to date. A total of 218 participants have been enrolled: 193 (88.5%) women without HIV and 25 (11.5%) women with HIV. Between February 2023 and March 2024, the following results will be ready for publication: maternal-neonatal malaria prevalence among pregnant women and babies in Kumba, the effect of HIV on (1) P. falciparum genetic diversity among pregnant women in Kumba, (2) the maternal and neonatal immune response to MSP1, MSP2, and EBA175 IgG antibody response to P. falciparum–caused malaria infection among pregnant women, and (3) the maternal and neonatal pro-inflammatory and anti-inflammatory cytokine response to malaria infection. ConclusionsHIV infection increases the prevalence of malaria infection among pregnant women and also influences the genetic diversity of P. falciparum, with MSP1 alleles being the most prevalent. HIV infection also reduces the antibody response to malaria infection, as well as altering the level of pro-inflammatory and anti-inflammatory responses to malaria infection. International Registered Report Identifier (IRRID)DERR1-10.2196/3821

    Relationship between malaria, anaemia, nutritional and socio-economic status amongst under-ten children, in the North Region of Cameroon: A cross-sectional assessment.

    No full text
    BackgroundDespite malaria, malnutrition and anaemia being major public-health challenges in Cameroon, very little has been reported on the interaction between these interconnected health determinants. This study therefore sought to investigate the relationship between malaria, anaemia, nutritional and socio-economic status amongst under-ten children living in six localities within two health districts in the North Region of Cameroon.MethodsAccordingly, a cross- sectional survey was conducted during the peak malaria season in November 2014, in Pitoa and Mayo-Oulo Health Districts. Three hundred and sixty eight children aged 6months-10 years were enrolled. Structured questionnaires were used to assess socio-economic status. Anthropometric indices were taken using standard methods and nutritional status assessed by calculating Height for Age (HA), Weight for Age (WA) and Weight for Height (WH) z-scores to determine stunting, underweight and wasting respectively. Finger-prick blood samples were used to prepare thin and thick blood smears for microscopy. Whole blood was collected to determine the PCV and blood spots on filter paper were used to extract plasmodium DNA for speciation by PCR.ResultsOverall prevalence rates of malaria, malnutrition and anaemia were 32.9%, 54.1% and 20.6% respectively. Stunting, underweight and wasting were detected in 56.9%, 63.5% and 34.8% of the children respectively. There was a significant association between malaria and malnutrition [OR = 1.89, (95% CI: 1.12-3.19); (p = 0.017)]. Malnutrition was also strongly associated with malaria status [OR = 2.07, (95% CI: 1.22-3.53); (p = 0.007)]. The prevalence rates of mild, moderate and severe anaemia were 8.1%, 9.2% and 3.3% respectively. Both malaria status and anaemia correlated with development index [OR = 0.75, (95% CI: 0.58-0.99); (p = 0.042)] and [OR = 1.45, (95% CI: 1.05-2.00); (p = 0.023)] respectively.ConclusionOur findings show a synergistic relationship between malaria and malnutrition. Effective collaboration between malaria control and nutrition intervention programmes is essential for proper case management and improved socio-economic status

    Expression profiles of miR3181 and miR199a in plasma and placenta of virally suppressed HIV-1 infected Cameroonian pregnant women at delivery.

    No full text
    Human immunodeficiency virus (HIV)-1 infection during pregnancy reduces the transplacental transfer of protective maternal antibodies needed to confer immunity during early postnatal life. However, the mediation of MicroRNA in this dysregulation is not well understood MicroRNAs 3181 and 199a have been shown to mediate neonatal Fc receptor (FcRn)-like transmembrane antibody transfer and endocytosis respectively but their expression levels in the placenta and plasma in women living with HIV have not been extensively investigated. The objective of this study was to determine how the expression levels of miR-3181 and miR-199a in the placenta and plasma are affected in women chronically infected with HIV who are on antiretroviral therapy (ART) and are virally suppressed at delivery. In this pilot case-control study, plasma and placenta biopsies were obtained from 36 (18 HIV+ and 18 HIV-) Cameroonian women at delivery. MicroRNAs 3181 and 199a expression levels were measured using RT-qPCR, data was analyzed using SPSS22.0 and R 3.60, and p values below 0.05 were considered statistically significant. All the HIV-infected women were on known ART regimens and were virally suppressed. There was no significant difference in the levels of miR-3181 (p>0.05) in the placenta and plasma amongst HIV-infected and HIV uninfected women. The expression levels of miR-199a were significantly greater in the plasma compared to the placenta of HIV+ (p = 0.00005) and HIV- (p = 0.027) women. Moreover, there was a significantly higher (p = 0.02) level of miR-199a in the plasma of women with HIV and their uninfected counterparts. Linear regression models adjusted for systolic pressure showed no significant difference (p>0.05) in the levels of miR-199a and miR-3181 in both the placenta and plasma due to HIV infection. Our findings suggest that even though ART uptake and viral suppression might help in maintaining miR3181 and miR199a levels in the placenta of women with HIV at comparative levels to those of their HIV negative counterparts, the significantly higher levels of miR-199a in the plasma of women with HIV compared to the placenta might highlight lurking systemic dangers and requires further investigation

    A comparison of thick-film microscopy, rapid diagnostic test, and polymerase chain reaction for accurate diagnosis of Plasmodium falciparum malaria

    No full text
    Abstract Background Accurate diagnosis of malaria is important for effective disease management and control. In Cameroon, presumptive clinical diagnosis, thick-film microscopy (TFM), and rapid diagnostic tests (RDT) are commonly used to diagnose cases of Plasmodium falciparum malaria. However, these methods lack sensitivity to detect low parasitaemia. Polymerase chain reaction (PCR), on the other hand, enhances the detection of sub-microscopic parasitaemia making it a much-needed tool for epidemiological surveys, mass screening, and the assessment of interventions for malaria elimination. Therefore, this study sought to determine the frequency of cases missed by traditional methods that are detected by PCR. Methods Blood samples, collected from 551 febrile Cameroonian patients between February 2014 and February 2015, were tested for P. falciparum by microscopy, RDT and PCR. The hospital records of participants were reviewed to obtain data on the clinical diagnosis made by the health care worker. Results The prevalence of malaria by microscopy, RDT and PCR was 31%, 45%, and 54%, respectively. However, of the 92% of participants diagnosed as having clinical cases of malaria by the health care worker, 38% were malaria-negative by PCR. PCR detected 23% and 12% more malaria infections than microscopy and RDT, respectively. A total of 128 (23%) individuals had sub-microscopic infections in the study population. The sensitivity of microscopy, RDT, and clinical diagnosis was 57%, 78% and 100%; the specificity was 99%, 94%, and 17%; the positive predictive values were 99%, 94%, and 59%; the negative predictive values were 66%, 78%, and 100%, respectively. Thus, 41% of the participants clinically diagnosed as having malaria had fever caused by other pathogens. Conclusions Malaria diagnostic methods, such as TFM and RDT missed 12–23% of malaria cases detected by PCR. Therefore, traditional diagnostic approaches (TFM, RDT and clinical diagnosis) are not adequate when accurate epidemiological data are needed for monitoring malaria control and elimination interventions

    Comparative Performance of Serological (IgM/IgG) and Molecular Testing (RT-PCR) of COVID-19 in Three Private Universities in Cameroon during the Pandemic

    No full text
    Background: COVID-19 remains a rapidly evolving and deadly pandemic worldwide. This necessitates the continuous assessment of existing diagnostic tools for a robust, up-to-date, and cost-effective pandemic response strategy. We sought to determine the infection rate (PCR-positivity) and degree of spread (IgM/IgG) of SARS-CoV-2 in three university settings in Cameroon Method: Study volunteers were recruited from November 2020 to July 2021 among COVID-19 non-vaccinated students in three Universities from two regions of Cameroon (West and Centre). Molecular testing was performed by RT-qPCR on nasopharyngeal swabs, and IgM/IgG antibodies in plasma were detected using the Abbott Panbio IgM/IgG rapid diagnostic test (RDT) at the Virology Laboratory of CREMER/IMPM/MINRESI. The molecular and serological profiles were compared, and p &lt; 0.05 was considered statistically significant. Results: Amongst the 291 participants enrolled (mean age 22.59 &plusmn; 10.43 years), 19.59% (57/291) were symptomatic and 80.41% (234/291) were asymptomatic. The overall COVID-19 PCR-positivity rate was 21.31% (62/291), distributed as follows: 25.25% from UdM-Bangangte, 27.27% from ISSBA-Yaounde, and 5% from IUEs/INSAM-Yaounde. Women were more affected than men (28.76% [44/153] vs. 13.04% [18/138], p &lt; 0.0007), and had higher seropositivity rates to IgM+/IgG+ (15.69% [24/153] vs. 7.25% [10/138], p &lt; 0.01). Participants from Bangangt&eacute;, the nomadic, and the &ldquo;non-contact cases&rdquo; primarily presented an active infection compared to those from Yaound&eacute; (p= 0.05, p = 0.05, and p = 0.01, respectively). Overall IgG seropositivity (IgM&minus;/IgG+ and IgM+/IgG+) was 24.4% (71/291). A proportion of 26.92% (7/26) presenting COVID-19 IgM+/IgG&minus; had negative PCR vs. 73.08% (19/26) with positive PCR, p &lt; 0.0001. Furthermore, 17.65% (6/34) with COVID-19 IgM+/IgG+ had a negative PCR as compared to 82.35% with a positive PCR (28/34), p &lt; 0.0001. Lastly, 7.22% (14/194) with IgM&minus;/IgG&minus; had a positive PCR. Conclusion: This study calls for a rapid preparedness and response strategy in higher institutes in the case of any future pathogen with pandemic or epidemic potential. The observed disparity between IgG/IgM and the viral profile supports prioritizing assays targeting the virus (nucleic acid or antigen) for diagnosis and antibody screening for sero-surveys

    Detection of Plasmodium falciparum DNA in saliva samples stored at room temperature: potential for a non-invasive saliva-based diagnostic test for malaria

    No full text
    Abstract Background Current malaria diagnostic methods require blood collection, that may be associated with pain and the risk of transmitting blood-borne pathogens, and often create poor compliance when repeated sampling is needed. On the other hand, the collection of saliva is minimally invasive; but saliva has not been widely used for the diagnosis of malaria. The aim of this study was to evaluate the diagnostic performance of saliva collected and stored at room temperature using the OMNIgene®•ORAL kit for diagnosing Plasmodium falciparum malaria. Methods Paired blood and saliva samples were collected from 222 febrile patients in Cameroon. Saliva samples were collected using the OMNIgene®•ORAL (OM-501) kit and stored at room temperature for up to 13 months. Thick blood film microscopy (TFM) was used to detect P. falciparum blood-stage parasites in blood. Detection of P. falciparum DNA in blood and saliva was based on amplification of the multi-copy 18 s rRNA gene using the nested-polymerase chain reaction (nPCR). Results Prevalence of malaria detected by TFM, nPCR-saliva and nPCR-blood was 22, 29, and 35%, respectively. Using TFM as the gold standard, the sensitivity of nPCR-saliva and nPCR-blood in detecting P. falciparum was 95 and 100%, respectively; with corresponding specificities of 93 and 87%. When nPCR-blood was used as gold standard, the sensitivity of nPCR-saliva and microscopy was 82 and 68%, respectively; whereas, the specificity was 99 and 100%, respectively. Nested PCR-saliva had a very good agreement with both TFM (kappa value 0.8) and blood PCR (kappa value 0.8). At parasitaemia > 10,000 parasites/µl of blood, the sensitivity of nPCR-saliva was 100%. Nested PCR-saliva detected 16 sub-microscopic malaria infections. One year after sample collection, P. falciparum DNA was detected in 80% of saliva samples stored at room temperature. Conclusions Saliva can potentially be used as an alternative non-invasive sample for the diagnosis of malaria and the OMNIgene®•ORAL kit is effective at transporting and preserving malaria parasite DNA in saliva at room temperature. The technology described in this study for diagnosis of malaria in resource-limited countries adds on to the armamentarium needed for elimination of malaria
    corecore