675 research outputs found

    Novel laser gain and time-resolved FTIR studies of photochemistry

    Get PDF
    Several techniques are discussed which can be used to explore laboratory photochemical processes and kinetics relevant to planetary atmospheres; these include time-resolved laser gain-versus-absorption spectroscopy and time-resolved Fourier transform infrared (FTIR) emission studies. The laser gain-versus-absorption method employed tunable diode and F-center lasers to determine the yields of excited photofragments and their kinetics. The time-resolved FTIR technique synchronizes the sweep of a commercial FTIR with a pulsed source of light to obtain emission spectra of novel transient species in the infrared. These methods are presently being employed to investigate molecular photodissociation, the yields of excited states of fragments, their subsequent reaction kinetics, Doppler velocity distributions, and velocity-changing collisions of translationally fast atoms. Such techniques may be employed in future investigations of planetary atmospheres, for example to study polycyclic aromatic hydrocarbons related to cometary emissions, to analyze acetylene decomposition products and reactions, and to determine spectral features in the near infrared and infrared wavelength regions for planetary molecules and clusters

    Laboratory studies of low temperature rate coefficients: The atmospheric chemistry of the outer planets

    Get PDF
    The purpose of the project is to perform laboratory measurements of reaction rate coefficients at low temperature. The reactions and temperatures of interest are those that are important in the chemistry of the hydrocarbon rich atmospheres of the outer planets and their satellites. In this stage of the study we are investigating reactions of ethynyl radicals, C2H, with acetylene (C2H2), methane (CH4), and hydrogen (H2). In the previous status report from 24 Jan. 1992, we reported on the development of the experimental apparatus and the first, preliminary data for the C2H + C2H2 reaction

    Innovative methods for the measurement of I* quantum yields and kinetics by diode laser gain-versus-absorption

    Get PDF
    The quantum yields of a variety of candidate molecules for solar lasant materials to produce I* were tested. The absorption spectrum was measured for each compound and the I* yield determined by the diode laser or by infrared emission, using C3F7I as a standard. The results of these measurements are summarized. A GaAsInP diode laser system was developed to probe I and I* atoms to obtain yields and kinetics. A technique of gain-versus-absorption spectroscopy was investigated to measure quantum yields with high accuracy. The errors in the yield data were reduced to +/- 2% or less. In addition, experiments were set up to measure the rates of F-sublevel changing collisions in both the I ground state and the I* excited state. Finally, experiments and modelling were carried out to explore the possibility of measuring the recombination rates of I* with C3F7 radicals

    Laboratory studies of low temperature rate coefficients: The atmospheric chemistry of the outer planets

    Get PDF
    The objectives of the research are to measure low temperature laboratory rate coefficients for key reactions relevant to the atmospheres of Titan and Saturn. These reactions are, for example, C2H + H2, CH4, C2H2, and other hydrocarbons which need to be measured at low temperatures, down to approximately 150 K. The results of this work are provided to NASA specialists who study modeling of the hydrocarbon chemistry of the outer planets. The apparatus for this work consists of a pulsed laser photolysis system and a tunable F-center probe laser to monitor the disappearance of C2H. A low temperature cell with a cryogenic circulating fluid in the outer jacket provides the gas handling system for this work. These elements have been described in detail in previous reports. Several new results are completed and the publications are just being prepared. The reaction of C2H with C2H2 has been measured with an improved apparatus down to 154 K. An Arrhenius plot indicates a clear increase in the rate coefficient at the lowest temperatures, most likely because of the long-lived (C4H3) intermediate. The capability to achieve the lowest temperatures in this work was made possible by construction of a new cell and addition of a multipass arrangement for the probe laser, as well as improvements to the laser system

    Laboratory studies of low temperature rate coefficients: The atmospheric chemistry of the outer planets

    Get PDF
    The objectives are to measure laboratory rate coefficients for key reactions of hydrocarbon molecules and radicals at low temperatures, which are relevant to the atmospheric photochemistry of Saturn, Jupiter, and Titan. Upcoming NASA planetary missions, such as Cassini, will probe the atmosphere of Titan in more detail, offering an excellent opportunity to test kinetic models and to establish fiducial standards for using kinetic models to interpret various parameters of the outer planets. Accurate low temperature kinetic data, which are presently lacking, may require crucial revisions to the rates of formation and destruction and are of utmost importance to the success of these efforts. In this program, several key reactions of ethynyl radicals (C2H) with acetylene (C2H2), methane (CH4), and oxygen (O2), down to temperatures of 170 K were successfully investigated. The experimental apparatus developed in our laboratory for measuring reaction kinetics at low temperatures consists of a laser photolysis/infrared probe laser setup. The rate measurements are carried out as a function of (low) temperature with a transverse flow cell designed specifically for these studies. A 193 nm argon fluoride pulsed excimer laser is used to photolyze a suitable precursor molecule, such as acetylene to produce C2H, and a high resolution, tunable infrared F-center laser (2.3-3.35 mu m) probes the transient concentrations of the radical species directly in absorption to extract the kinetic rate coefficients

    Rate Coefficients for Reactions of Ethynyl Radical (C2H) With HCN and CH3CN: Implications for the Formation of Comples Nitriles on Titan

    Get PDF
    Rate coefficients for the reactions of C2H + HCN yields products and C2H + CH3CN yields products have been measured over the temperature range 262-360 K. These experiments represent an ongoing effort to accurately measure reaction rate coefficients of the ethynyl radical, C2H, relevant to planetary atmospheres such as those of Jupiter and Saturn and its satellite Titan. Laser photolysis of C2H2 is used to produce C2H, and transient infrared laser absorption is employed to measure the decay of C2H to obtain the subsequent reaction rates in a transverse flow cell. Rate constants for the reaction C2H + HCN yields products are found to increase significantly with increasing temperature and are measured to be (3.9-6.2) x 10(exp 13) cm(exp 3) molecules(exp -1) s(exp -1) over the temperature range of 297-360 K. The rate constants for the reaction C2H + CH3CN yields products are also found to increase substantially with increasing temperature and are measured to be (1.0-2.1) x 10(exp -12) cm(exp 3) molecules(exp -1) s(exp -1) over the temperature range of 262-360 K. For the reaction C2H + HCN yields products, ab initio calculations of transition state structures are used to infer that the major products form via an addition/elimination pathway. The measured rate constants for the reaction of C2H + HCN yields products are significantly smaller than values currently employed in photochemical models of Titan, which will affect the HC3N distribution

    Investigating the 3.3 micron infrared fluorescence from naphthalene following ultraviolet excitation

    Get PDF
    Polycyclic aromatic hydrocarbon (PAH) type molecules are proposed as the carriers of the unidentified infrared (UIR) bands. Detailed studies of the 3.3 micrometer infrared emission features from naphthalene, the simplest PAH, following ultraviolet laser excitation are used in the interpretation of the 3.29 micrometer (3040 cm(sup -1)) UIR band. A time-resolved Fourier transform spectrometer is used to record the infrared emission spectrum of gas-phase naphthalene subsequent to ultraviolet excitation facilitated by an excimer laser operated at either 193 nm or 248 nm. The emission spectra differ significantly from the absorption spectrum in the same spectral region. Following 193 nm excitation the maximum in the emission profile is red-shifted 45 cm(sup -1) relative to the absorption maximum; a 25 cm(sup -1) red-shift is observed after 248 nm excitation. The red-shifting of the emission spectrum is reduced as collisional and radiative relaxation removes energy from the highly vibrationally excited molecules. Coupling between the various vibrational modes is thought to account for the differences between absorption and emission spectra. Strong visible emission is also observed following ultraviolet excitation. Visible emission may play an important role in the rate of radiative relaxation, which according to the interstellar PAH hypothesis occurs only by the slow emission of infrared photons. Studying the visible emission properties of PAH type molecules may be useful in the interpretation of the DIB's observed in absorption
    corecore