34 research outputs found

    Disagreement and Faith: Ockham on Faith as an Intellectual Virtue.

    Get PDF
    At the beginning of Chapter III, Book VI of the Nicomachean Ethics, Aristotle lists five intellectual virtues or veridical habits: art, scientific knowledge, prudence, intellectual intuition, and wisdom (1139b14-1139b19). The intellectual virtues are habitual powers of the mind to act that promote certainty and true belief, and Aristotle distinguishes them from opinion, in which “we may be mistaken” (1139b19). Unlike beliefs attributable to the veridical habits, which altogether exclude falsity and doubt, it is recognized even by those who hold them that opinions are less than certain, and that they could be either true or false. Regarding faith, however, it is unclear from Aristotle`s discussion in the Nicomachean Ethics whether it is opinion or veridical habit. Beliefs held on the basis of faith, such as my belief about who my parents are, have the unwavering certainty that mere opinions lack, yet they lack the evidence that would rule out error and make for knowledge. Should faith be considered an intellectual virtue or a species of opinion? Or, is faith a category unto itself? This paper examines a late-medieval debate about the position of faith in the framework of the veridical habits. William of Ockham (c. 1287-1347) makes faith an intellectual virtue on par with the other five. While we cannot have evident knowledge on the basis of faith in the way that we can through the other five veridical habits, beliefs held through faith are nevertheless certain and true. For this reason faith should be considered a veridical habit distinguishable from opinion. Ockham’s confrùre and student, Adam Wodeham (c. 1298-1358), rejects faith as a veridical habit. If faith were a veridical habit, then an increase in degree should eliminate disagreement. But an equal increase in faith on both sides of a dispute does not reduce disagreement. If anything, it intensifies it. So faith cannot be a veridical habit. Several counter-arguments in support of Ockham’s position that stem from his epistemological externalism are also discussed, but I claim that in the final analysis Wodeham is correct. According to Ockham’s own epistemology and psychology faith cannot be an intellectual virtue

    A universal TagModule collection for parallel genetic analysis of microorganisms

    Get PDF
    Systems-level analyses of non-model microorganisms are limited by the existence of numerous uncharacterized genes and a corresponding over-reliance on automated computational annotations. One solution to this challenge is to disrupt gene function using DNA tag technology, which has been highly successful in parallelizing reverse genetics in Saccharomyces cerevisiae and has led to discoveries in gene function, genetic interactions and drug mechanism of action. To extend the yeast DNA tag methodology to a wide variety of microorganisms and applications, we have created a universal, sequence-verified TagModule collection. A hallmark of the 4280 TagModules is that they are cloned into a Gateway entry vector, thus facilitating rapid transfer to any compatible genetic system. Here, we describe the application of the TagModules to rapidly generate tagged mutants by transposon mutagenesis in the metal-reducing bacterium Shewanella oneidensis MR-1 and the pathogenic yeast Candida albicans. Our results demonstrate the optimal hybridization properties of the TagModule collection, the flexibility in applying the strategy to diverse microorganisms and the biological insights that can be gained from fitness profiling tagged mutant collections. The publicly available TagModule collection is a platform-independent resource for the functional genomics of a wide range of microbial systems in the post-genome era

    BAC library resources for map-based cloning and physical map construction in barley (Hordeum vulgare L.)

    Get PDF
    Background: Although second generation sequencing (2GS) technologies allow re-sequencing of previously gold-standard-sequenced genomes, whole genome shotgun sequencing and de novo assembly of large and complex eukaryotic genomes is still difficult. Availability of a genome-wide physical map is therefore still a prerequisite for whole genome sequencing for genomes like barley. To start such an endeavor, large insert genomic libraries, i.e. Bacterial Artificial Chromosome (BAC) libraries, which are unbiased and representing deep haploid genome coverage, need to be ready in place. Result: Five new BAC libraries were constructed for barley (Hordeum vulgare L.) cultivar Morex. These libraries were constructed in different cloning sites (HindIII, EcoRI, MboI and BstXI) of the respective vectors. In order to enhance unbiased genome representation and to minimize the number of gaps between BAC contigs, which are often due to uneven distribution of restriction sites, a mechanically sheared library was also generated. The new BAC libraries were fully characterized in depth by scrutinizing the major quality parameters such as average insert size, degree of contamination (plate wide, neighboring, and chloroplast), empty wells and off-scale clones (clones with 250 fragments). Additionally a set of gene-based probes were hybridized to high density BAC filters and showed that genome coverage of each library is between 2.4 and 6.6 X. Conclusion: BAC libraries representing >20 haploid genomes are available as a new resource to the barley research community. Systematic utilization of these libraries in high-throughput BAC fingerprinting should allow developing a genome-wide physical map for the barley genome, which will be instrumental for map-based gene isolation and genome sequencing.Daniela Schulte, Ruvini Ariyadasa, Bujun Shi, Delphine Fleury, Chris Saski, Michael Atkins, Pieter deJong, Cheng-Cang Wu, Andreas Graner, Peter Langridge and Nils Stei

    Plant phenomics, from sensors to knowledge

    Get PDF
    Major improvements in crop yield are needed to keep pace with population growth and climate change. While plant breeding efforts have greatly benefited from advances in genomics, profiling the crop phenome (i.e., the structure and function of plants) associated with allelic variants and environments remains a major technical bottleneck. Here, we review the conceptual and technical challenges facing plant phenomics. We first discuss how, given plants’ high levels of morphological plasticity, crop phenomics presents distinct challenges compared with studies in animals. Next, we present strategies for multi-scale phenomics, and describe how major improvements in imaging, sensor technologies and data analysis are now making high-throughput root, shoot, whole-plant and canopy phenomic studies possible. We then suggest that research in this area is entering a new stage of development, in which phenomic pipelines can help researchers transform large numbers of images and sensor data into knowledge, necessitating novel methods of data handling and modelling. Collectively, these innovations are helping accelerate the selection of the next generation of crops more sustainable and resilient to climate change, and whose benefits promise to scale from physiology to breeding and to deliver real world impact for ongoing global food security efforts

    Evidence-Based Annotation of Gene Function in Shewanella oneidensis MR-1 Using Genome-Wide Fitness Profiling across 121 Conditions

    Get PDF
    Most genes in bacteria are experimentally uncharacterized and cannot be annotated with a specific function. Given the great diversity of bacteria and the ease of genome sequencing, high-throughput approaches to identify gene function experimentally are needed. Here, we use pools of tagged transposon mutants in the metal-reducing bacterium Shewanella oneidensis MR-1 to probe the mutant fitness of 3,355 genes in 121 diverse conditions including different growth substrates, alternative electron acceptors, stresses, and motility. We find that 2,350 genes have a pattern of fitness that is significantly different from random and 1,230 of these genes (37% of our total assayed genes) have enough signal to show strong biological correlations. We find that genes in all functional categories have phenotypes, including hundreds of hypotheticals, and that potentially redundant genes (over 50% amino acid identity to another gene in the genome) are also likely to have distinct phenotypes. Using fitness patterns, we were able to propose specific molecular functions for 40 genes or operons that lacked specific annotations or had incomplete annotations. In one example, we demonstrate that the previously hypothetical gene SO_3749 encodes a functional acetylornithine deacetylase, thus filling a missing step in S. oneidensis metabolism. Additionally, we demonstrate that the orphan histidine kinase SO_2742 and orphan response regulator SO_2648 form a signal transduction pathway that activates expression of acetyl-CoA synthase and is required for S. oneidensis to grow on acetate as a carbon source. Lastly, we demonstrate that gene expression and mutant fitness are poorly correlated and that mutant fitness generates more confident predictions of gene function than does gene expression. The approach described here can be applied generally to create large-scale gene-phenotype maps for evidence-based annotation of gene function in prokaryotes

    Use of anticoagulants and antiplatelet agents in stable outpatients with coronary artery disease and atrial fibrillation. International CLARIFY registry

    Get PDF

    Abstracts from the Food Allergy and Anaphylaxis Meeting 2016

    Get PDF
    corecore