44 research outputs found

    Entropic Test of Quantum Contextuality

    Full text link
    We study the contextuality of a three-level quantum system using classical conditional entropy of measurement outcomes. First, we analytically construct the minimal configuration of measurements required to reveal contextuality. Next, an entropic contextual inequality is formulated, analogous to the entropic Bell inequalities derived by Braunstein and Caves in [Phys. Rev. Lett. {\bf 61}, 662 (1988)], that must be satisfied by all non-contextual theories. We find optimal measurements for violation of this inequality. The approach is easily extendable to higher dimensional quantum systems and more measurements. Our theoretical findings can be verified in the laboratory with current technology.Comment: 4 pages, 4 figure

    Quantum leap: how to complete a quantum walk in a single step

    Full text link
    Quantum walks provide simple models of various fundamental processes. It is pivotal to know when the dynamics underlying a walk lead to quantum advantages just by examining its statistics. A walk with many indistinguishable particles and measurements of non-classical multi-particle correlations is likely to reveal the quantum nature. The number of elements O(n)O(n) in a setup realizing walks grows with their length or spread nn. We introduce the concept of a quantum leap, a process which can be achieved with fewer or complementary resources and which in a single step simulates another long process. The process and its leap are described by the same Hamiltonian but, the latter parametrizes the evolution with a tunable parameter of a setup. In the case of walks, a leap immediately gives a probability distribution which results only after many steps. This may be appealing for simulation of processes which are lengthy or require dynamical control. We discuss a leap based on the multi-particle Hong--Ou--Mandel interference, an inherently quantum phenomenon. It reproduces a quantum walk enabling perfect state transfer through spin chains. It requires a beam splitter, two detectors and nn particles to mimic a walk on a chain of size O(n)O(n), for time fixed by beam-splitter's reflectivity. Our results apply to a broad class of systems where the HOM-like effects can be observed, and may constitute a new approach to simulation of complex Hamiltonians with passive interferometers

    Local Realism of Macroscopic Correlations

    Full text link
    We show that for macroscopic measurements which cannot reveal full information about microscopic states of the system, the monogamy of Bell inequality violations present in quantum mechanics implies that practically all correlations between macroscopic measurements can be described by local realistic models. Our results hold for sharp measurement and arbitrary closed quantum systems.Comment: 9 pages incl. one Appendix, 2 figure

    Reference frames for Bell inequality violation in the presence of superselection rules

    Get PDF
    Superselection rules (SSRs) constrain the allowed states and operations in quantum theory. They limit preparations and measurements and hence impact our ability to observe non-locality, in particular the violation of Bell inequalities. We show that a reference frame compatible with a particle number SSR does not allow observers to violate a Bell inequality if and only if it is prepared using only local operations and classical communication. In particular, jointly prepared separable reference frames are sufficient for obtaining violations of a Bell inequality. We study the size and non-local properties of such reference frames using superselection-induced variance. These results suggest the need for experimental Bell tests in the presence of superselection

    Basal-plane Incommensurate Phases in HCP Structures

    Full text link
    An Ising model with competing interaction is used to study the appearance of incommensurate phases in the basal plane of an hexagonal closed-packed structure. The calculated mean-field phase diagram reveals various 1q-incommensurate and lock-in phases. The results are applied to explain the basal-plane incommensurate phase in some compounds of the A'A"BX_4 family, like K_2MoO_4, K_2WO_4, Rb_2WO4 and to describe the sequence of high-temperature phase transitions in other compounds of this family.Comment: 8 pages, RevTeX + 4 ps figure

    Concept of a system for training of bioprosthetic hand control in one side handless humans using virtual reality and visual and sensory biofeedback

    No full text
    In the paper the concept of a training system is presented which can help to stimulate sensory-motor cortex centers in order to develop their ability for efficient use of bioprosthesis. The basis of the training system is a virtual reality with a virtual hand, that the trained patient can move and concurrently observe the movement on the screen (visual feedback) and whose contact with virtual objects the patient may feel as a touch (sensory feedback). The construction of the virtual hand consists of physical elements, connected by joints, a graphical object representing the structure of the hand and the bones enable its deformation. The control procedure of virtual hand is realized through recognition of intention of hand motion on the basis of EMG signals coming from the stump muscles. The recognition algorithm is constructed using the learning set, i.e the set of pairs containing the class of hand fingers movement and accompanying myopotentials segments, which are acquired from the muscles of healthy hand

    Medical Telemetry System for Monitoring and Localization of Patients : Functional Model and Algorithms for Biosignals Processing

    No full text
    The article presents the concept of hospital telemetric system. The goal of the project is a model of early warning systems for patients outside intensive care wards. Proposed system is based on constant telemetric monitoring using objective physiological parameters. Using low-distance sensor network which covers body of a patient, so-called BAN (Body Area Network) is the main innovation of the project. Some preliminary results of ECG analysis and interpretation modules and units of proposed system will be presented
    corecore