24 research outputs found

    Characterization of nanodimensional Ni-Zn ferrite prepared by mechanochemical and thermal methods.

    Get PDF
    Nickel zinc ferrite nanoparticles, Ni1−xZnxFe2O4 (x = 0, 0.2, 0.5, 0.8, 1.0), with dimensions below 10 nm have been prepared by combining chemical precipitation with high-energy ball milling. For comparison, their analogues obtained by thermal synthesis have also been studied. Mössbauer spectroscopy, X-ray diffraction, and magnetic measurements are used for the characterization of the obtained materials. X-ray diffraction shows that after 3h of mechanical treatment ferrites containing zinc are formed, while 6h of treatment is needed to obtain NiFe2O4. The magnetic properties of the samples exhibit a strong dependence on the phase composition, particle size and preparation method

    Mössbauer and magnetic study of Co x Fe3−x O4 nanoparticles

    Get PDF
    Magnetic nanoparticles of cobalt ferrites Co x Fe3−x O4 (x = 1 or 2) have been obtained either by mechanical milling or thermal treatment of pre-prepared layered double hydroxide carbonate x-LDH–CO3. Mechanical milling of the 1-LDH–CO3 leads to the large-scale preparation of nearly spherical nanoparticles of CoFe2O4, the size of which (5 to 20 nm) is controlled by the treatment time. Core-shell structure with surface spin-canting has been considered for the nanoparticles formed to explain the observed hysteresis loop shift (from ZFC–FC) in the magnetic properties. Annealing treatment of the 2-LDH–CO3 below 673 K results in the formation of nearly spherical pure Co2FeO4 nanoparticles. At 673 K and above, the LDH decomposition leads to the formation of a mixture of both spinels phases Co2FeO4 and CoFe2O4, the amount of the latter increases with annealing temperature. Unusually high magnetic hardness characterized by a 22 kOe coercive field at 1.8 K has been observed, which reflects the high intrinsic anisotropy for Co2FeO4

    The upper critical field in superconducting MgB_2

    Full text link
    The upper critical field Hc2(T) of sintered pellets of the recently discovered MgB_2 superconductor was investigated in magnetic fields up to 16 T. The upper critical field of the major fraction of the investigated sample was determined from ac susceptibility and resistance data and was found to increase up to Hc2(0) = 13 T at T = 0 corresponding to a coherence length of 5.0 nm. A small fraction of the sample exhibits higher upper critical fields which were measured both resistively and by dc magnetization measurements. The temperature dependence of the upper critical field, Hc2(T), shows a positive curvature near Tc and at intermediate temperatures. This positive curvature of Hc2(T) is similar to that found for the borocarbides YNi_2B_2C and LuNi_2B_2C indicating that MgB_2 is in the clean limit.Comment: 8 pages with 4 figure

    Mössbauer study of nanodimensional nickel ferrite-mechanochemical synthesis and catalytic properties

    Get PDF
    Iron-nickel spinel oxide NiFe2O4 nanoparticles have been prepared by the combination of chemical precipitation and subsequent mechanical milling. For comparison, their analogue obtained by thermal synthesis is also studied. Phase composition and structural properties of iron-nickel oxides are investigated by X-ray diffraction and Mössbauer spectroscopy. Their catalytic behavior in methanol decomposition to CO and methane is tested. An influence of the preparation method on the reduction and catalytic properties of iron-nickel samples is established

    New records and noteworthy data of plants, algae and fungi in SE Europe and adjacent regions, 13

    Get PDF
    This paper presents new records and noteworthy data on the following taxa in SE Europe and adjacent regions: brown alga Heribaudiella fluviatilis, red alga Batrachospermum skujae, saprotrophic fungus Gnomonia geranii-macrorrhizi, mycorrhizal fungi Amanita alseides and Russula griseascens, liverwort Ricciocarpos natans, moss Blindia acuta, Leucodon sciuroides var. morensis and Pseudostereodon procerrimus, monocots Allium ampeloprasum, Carex ferruginea and Carex limosa and dicots Convolvulus althaeoides, Fumana aciphylla, Hieracium petrovae, Lamium bifidum subsp. bifidum and Ranunculus fontanus are given within SE Europe and adjacent region

    Impact of clinical phenotypes on management and outcomes in European atrial fibrillation patients: a report from the ESC-EHRA EURObservational Research Programme in AF (EORP-AF) General Long-Term Registry

    Get PDF
    Background: Epidemiological studies in atrial fibrillation (AF) illustrate that clinical complexity increase the risk of major adverse outcomes. We aimed to describe European AF patients\u2019 clinical phenotypes and analyse the differential clinical course. Methods: We performed a hierarchical cluster analysis based on Ward\u2019s Method and Squared Euclidean Distance using 22 clinical binary variables, identifying the optimal number of clusters. We investigated differences in clinical management, use of healthcare resources and outcomes in a cohort of European AF patients from a Europe-wide observational registry. Results: A total of 9363 were available for this analysis. We identified three clusters: Cluster 1 (n = 3634; 38.8%) characterized by older patients and prevalent non-cardiac comorbidities; Cluster 2 (n = 2774; 29.6%) characterized by younger patients with low prevalence of comorbidities; Cluster 3 (n = 2955;31.6%) characterized by patients\u2019 prevalent cardiovascular risk factors/comorbidities. Over a mean follow-up of 22.5 months, Cluster 3 had the highest rate of cardiovascular events, all-cause death, and the composite outcome (combining the previous two) compared to Cluster 1 and Cluster 2 (all P <.001). An adjusted Cox regression showed that compared to Cluster 2, Cluster 3 (hazard ratio (HR) 2.87, 95% confidence interval (CI) 2.27\u20133.62; HR 3.42, 95%CI 2.72\u20134.31; HR 2.79, 95%CI 2.32\u20133.35), and Cluster 1 (HR 1.88, 95%CI 1.48\u20132.38; HR 2.50, 95%CI 1.98\u20133.15; HR 2.09, 95%CI 1.74\u20132.51) reported a higher risk for the three outcomes respectively. Conclusions: In European AF patients, three main clusters were identified, differentiated by differential presence of comorbidities. Both non-cardiac and cardiac comorbidities clusters were found to be associated with an increased risk of major adverse outcomes

    Study of initial stage of mechanochemical transformation in pyrite

    No full text
    The initial stage of transformation of pyrite to Fe(II)-sulfate as a result of mechanical milling is studied by X-ray powder diffraction (XRD), Moessbauer spectroscopy (MS), Infrared (IR) and X-ray photoelectron spectroscopy (XPS) techniques. A degree of conversion of 0.071 is achieved in the time interval of 0-36 min. The kinetic data satisfy the equation of a shrinking core reaction 1-(1-α)1/3=kt. The reaction is of the first order. The calculated rate constant is k=6.434.10-4 min-1
    corecore