22 research outputs found

    A Wideband 77-GHz, 17.5-dBm Fully Integrated Power Amplifier in Silicon

    Get PDF
    A 77-GHz, +17.5 dBm power amplifier (PA) with fully integrated 50-Ω input and output matching and fabricated in a 0.12-µm SiGe BiCMOS process is presented. The PA achieves a peak power gain of 17 dB and a maximum single-ended output power of 17.5 dBm with 12.8% of power-added efficiency (PAE). It has a 3-dB bandwidth of 15 GHz and draws 165 mA from a 1.8-V supply. Conductor-backed coplanar waveguide (CBCPW) is used as the transmission line structure resulting in large isolation between adjacent lines, enabling integration of the PA in an area of 0.6 mm^2. By using a separate image-rejection filter incorporated before the PA, the rejection at IF frequency of 25 GHz is improved by 35 dB, helping to keep the PA design wideband

    A 24-GHz, +14.5-dBm fully integrated power amplifier in 0.18-ÎĽm CMOS

    Get PDF
    A 24-GHz +14.5-dBm fully integrated power amplifier with on-chip 50-[ohm] input and output matching is demonstrated in 0.18-ÎĽm CMOS. The use of substrate-shielded coplanar waveguide structures for matching networks results in low passive loss and small die size. Simple circuit techniques based on stability criteria derived result in an unconditionally stable amplifier. The power amplifier achieves a power gain of 7 dB and a maximum single-ended output power of +14.5-dBm with a 3-dB bandwidth of 3.1 GHz, while drawing 100 mA from a 2.8-V supply. The chip area is 1.26 mm^2

    A fully integrated 24-GHz phased-array transmitter in CMOS

    Get PDF
    This paper presents the first fully integrated 24-GHz phased-array transmitter designed using 0.18-/spl mu/m CMOS transistors. The four-element array includes four on-chip CMOS power amplifiers, with outputs matched to 50 /spl Omega/, that are each capable of generating up to 14.5 dBm of output power at 24 GHz. The heterodyne transmitter has a two-step quadrature up-conversion architecture with local oscillator (LO) frequencies of 4.8 and 19.2 GHz, which are generated by an on-chip frequency synthesizer. Four-bit LO path phase shifting is implemented in each element at 19.2 GHz, and the transmitter achieves a peak-to-null ratio of 23 dB with raw beam-steering resolution of 7/spl deg/ for radiation normal to the array. The transmitter can support data rates of 500 Mb/s on each channel (with BPSK modulation) and occupies 6.8 mm /spl times/ 2.1 mm of die area

    A 24-GHz SiGe Phased-Array Receiver—LO Phase-Shifting Approach

    Get PDF
    A local-oscillator phase-shifting approach is introduced to implement a fully integrated 24-GHz phased-array receiver using an SiGe technology. Sixteen phases of the local oscillator are generated in one oscillator core, resulting in a raw beam-forming accuracy of 4 bits. These phases are distributed to all eight receiving paths of the array by a symmetric network. The appropriate phase for each path is selected using high-frequency analog multiplexers. The raw beam-steering resolution of the array is better than 10 [degrees] for a forward-looking angle, while the array spatial selectivity, without any amplitude correction, is better than 20 dB. The overall gain of the array is 61 dB, while the array improves the input signal-to-noise ratio by 9 dB

    An Integrated Subharmonic Coupled-Oscillator Scheme for a 60-GHz Phased-Array Transmitter

    Get PDF
    This paper describes the design of an integrated coupled-oscillator array in SiGe for millimeter-wave applications. The design focuses on a scalable radio architecture where multiple dies are tiled to form larger arrays. A 2 × 2 oscillator array for a 60-GHz transmitter is fabricated with integrated power amplifiers and on-chip antennas. To lock between multiple dies, an injection-locking scheme appropriate for wire-bond interconnects is described. The 2 × 2 array demonstrates a 200–MHz locking range and 1 × 4 array formed by two adjacent chips has a 60-MHz locking range. The phase noise of the coupled oscillators is below 100 dBc/Hz at a 1-MHz offset when locked to an external reference. To the best of the authors’ knowledge, this is the highest frequency demonstration of coupled oscillators fabricated in a conventional silicon integrated-circuit process

    A 77-GHz Phased-Array Transceiver With On-Chip Antennas in Silicon: Receiver and Antennas

    Get PDF
    In this paper, we present the receiver and the on-chip antenna sections of a fully integrated 77-GHz four-element phased-array transceiver with on-chip antennas in silicon. The receiver section of the chip includes the complete down-conversion path comprising low-noise amplifier (LNA), frequency synthesizer, phase rotators, combining amplifiers, and on-chip dipole antennas. The signal combining is performed using a novel distributed active combining amplifier at an IF of 26 GHz. In the LO path, the output of the 52-GHz VCO is routed to different elements and can be phase shifted locally by the phase rotators. A silicon lens on the backside is used to reduce the loss due to the surface-wave power of the silicon substrate. Our measurements show a single-element LNA gain of 23 dB and a noise figure of 6.0 dB. Each of the four receive paths has a gain of 37 dB and a noise figure of 8.0 dB. Each on-chip antenna has a gain of +2 dBi

    Integrated phased array systems in silicon

    Get PDF
    Silicon offers a new set of possibilities and challenges for RF, microwave, and millimeter-wave applications. While the high cutoff frequencies of the SiGe heterojunction bipolar transistors and the ever-shrinking feature sizes of MOSFETs hold a lot of promise, new design techniques need to be devised to deal with the realities of these technologies, such as low breakdown voltages, lossy substrates, low-Q passives, long interconnect parasitics, and high-frequency coupling issues. As an example of complete system integration in silicon, this paper presents the first fully integrated 24-GHz eight-element phased array receiver in 0.18-ÎĽm silicon-germanium and the first fully integrated 24-GHz four-element phased array transmitter with integrated power amplifiers in 0.18-ÎĽm CMOS. The transmitter and receiver are capable of beam forming and can be used for communication, ranging, positioning, and sensing applications

    Quadrature Subharmonic Coupled Oscillators for a 60GHz SiGe Scalable Phased Array

    Get PDF
    This paper describes an integrated coupled oscillator array in SiGe for millimeter wave applications. The design focuses on scalable radio architectures where multiple dies are tiled to form larger arrays. A 2 x 2 oscillator array for a 60GHz transmitter is designed with integrated power amplifiers and antennas. The 2 x 2 array demonstrates a 200MHz locking range and 1 x 4 array formed by two adjacent chips has a 60MHz locking range. The phase noise of the array is below -110dBc/Hz at a 1MHz offset
    corecore