2,244 research outputs found

    Effects of a neutrino-dark energy coupling on oscillations of high-energy neutrinos

    Get PDF
    If dark energy (DE) is a dynamical field rather than a cosmological constant, an interaction between DE and the neutrino sector could exist, modifying the neutrino oscillation phenomenology and causing CP and apparent Lorentz violating effects. The terms in the Hamiltonian for flavor propagation induced by the DE-neutrino coupling do not depend on the neutrino energy, while the ordinary components decrease as Δm2/Eν\Delta m^2/E_{\nu}. Therefore, the DE-induced effects are absent at lower neutrino energies, but become significant at higher energies, allowing to be searched for by neutrino observatories. We explore the impact of the DE-neutrino coupling on the oscillation probability and the flavor transition in the three-flavor framework, and investigate the CP-violating and apparent Lorentz violating effects. We find that DE-induced effects become observable for Eνmeff∼10−20 GeV2E_{\nu}m_{\text{eff}} \sim 10^{-20}~ \text{GeV}^2, where meffm_{\rm eff} is the effective mass parameter in the DE-induced oscillation probability, and CP is violated over a wide energy range. We also show that current and future experiments have the sensitivity to detect anomalous effects induced by a DE-neutrino coupling and probe the new mixing parameters. The DE-induced effects on neutrino oscillation can be distinguished from other new physics possibilities with similar effects, through the detection of the directional dependence of the interaction, which is specific to this interaction with DE. However, current experiments will not yet be able to measure the small changes of ∼0.03%\sim 0.03\% in the flavor composition due to this directional effect.Comment: 11 pages, 15 figure

    The impact of civil war on forest wildlife in West Africa: Mammals in Gola Forest, Sierra Leone

    Get PDF
    Human conflicts may sometimes benefit wildlife by depopulating wilderness areas but there is evidence from Africa that the impacts tend to be negative. The forested states of West Africa have experienced much recent human conflict but there have been no assessments of impacts on the wildlife. We conducted surveys of mammals in the 710-km2 Gola Forest reserves to assess the impact of the 1991-2001 civil war in Sierra Leone. Gola is the most important remaining tract of lowland forest in the country and a key site for the conservation of the highly threatened forests of the Upper Guinea region. We found that Gola has survived well despite being in the heart of the area occupied by the rebels. We recorded 44 species of larger mammal, including 18 threatened, near-threatened and endemic species, accounting for all species recorded in pre-war surveys and adding several more (African buffalo Syncerus caffer nanus and water chevrotain Hyemoschus aquaticus). Populations of primates were healthy with little evidence of decline. Duiker detection rates were low and further work is required to confirm their numbers as they include five species endemic (or near endemic) to the Upper Guinea region, three of which are threatened. However, the population of African forest elephants Loxodonta cyclotis has collapsed, with only a few individuals remaining from c. 110 in the mid 1980s. We conclude that peacetime pressures from the bushmeat trade, clearance for agriculture, logging and mining are likely to be far greater for Gola than the pressures from the civil war

    Decreasing Diagrams for Confluence and Commutation

    Full text link
    Like termination, confluence is a central property of rewrite systems. Unlike for termination, however, there exists no known complexity hierarchy for confluence. In this paper we investigate whether the decreasing diagrams technique can be used to obtain such a hierarchy. The decreasing diagrams technique is one of the strongest and most versatile methods for proving confluence of abstract rewrite systems. It is complete for countable systems, and it has many well-known confluence criteria as corollaries. So what makes decreasing diagrams so powerful? In contrast to other confluence techniques, decreasing diagrams employ a labelling of the steps with labels from a well-founded order in order to conclude confluence of the underlying unlabelled relation. Hence it is natural to ask how the size of the label set influences the strength of the technique. In particular, what class of abstract rewrite systems can be proven confluent using decreasing diagrams restricted to 1 label, 2 labels, 3 labels, and so on? Surprisingly, we find that two labels suffice for proving confluence for every abstract rewrite system having the cofinality property, thus in particular for every confluent, countable system. Secondly, we show that this result stands in sharp contrast to the situation for commutation of rewrite relations, where the hierarchy does not collapse. Thirdly, investigating the possibility of a confluence hierarchy, we determine the first-order (non-)definability of the notion of confluence and related properties, using techniques from finite model theory. We find that in particular Hanf's theorem is fruitful for elegant proofs of undefinability of properties of abstract rewrite systems

    Impact of axisymmetric mass models for dwarf spheroidal galaxies on indirect dark matter searches

    Get PDF
    Dwarf spheroidals are low-luminosity satellite galaxies of the Milky Way highly dominated by dark matter (DM). Therefore, they are prime targets to search for signals from dark matter annihilation using gamma-ray observations. While the typical assumption is that the dark matter density profile of these satellite galaxies can be described by a spherical symmetric Navarro-Frenk-White (NFW) profile, recent observational data of stellar kinematics suggest that the DM halos around these galaxies are better described by axisymmetric profiles. Motivated by such evidence, we analyse about seven years of PASS8 Fermi data for seven classical dwarf galaxies, including Draco, adopting both the widely used NFW profile and observationally-motivated axisymmetric density profiles. For four of the selected dwarfs (Sextans, Carina, Sculptor and Fornax) axisymmetric mass models suggest a cored density profile rather than the commonly adopted cusped profile. We found that upper limits on the annihilation cross section for some of these dwarfs are significantly higher than the ones achieved using an NFW profile. Therefore, upper limits in the literature obtained using spherical symmetric cusped profiles, such as the NFW, might be overestimated. Our results show that it is extremely important to use observationally motivated density profiles going beyond the usually adopted NFW in order to obtain accurate constraints on the dark matter annihilation cross section.Comment: 9 pages, 5 figure

    Introducing a Calculus of Effects and Handlers for Natural Language Semantics

    Get PDF
    In compositional model-theoretic semantics, researchers assemble truth-conditions or other kinds of denotations using the lambda calculus. It was previously observed that the lambda terms and/or the denotations studied tend to follow the same pattern: they are instances of a monad. In this paper, we present an extension of the simply-typed lambda calculus that exploits this uniformity using the recently discovered technique of effect handlers. We prove that our calculus exhibits some of the key formal properties of the lambda calculus and we use it to construct a modular semantics for a small fragment that involves multiple distinct semantic phenomena

    ProtiWanze® as protein supplement in rations for dairy cattle

    Get PDF

    Discriminating Lambda-Terms Using Clocked Boehm Trees

    Full text link
    As observed by Intrigila, there are hardly techniques available in the lambda-calculus to prove that two lambda-terms are not beta-convertible. Techniques employing the usual Boehm Trees are inadequate when we deal with terms having the same Boehm Tree (BT). This is the case in particular for fixed point combinators, as they all have the same BT. Another interesting equation, whose consideration was suggested by Scott, is BY = BYS, an equation valid in the classical model P-omega of lambda-calculus, and hence valid with respect to BT-equality but nevertheless the terms are beta-inconvertible. To prove such beta-inconvertibilities, we employ `clocked' BT's, with annotations that convey information of the tempo in which the data in the BT are produced. Boehm Trees are thus enriched with an intrinsic clock behaviour, leading to a refined discrimination method for lambda-terms. The corresponding equality is strictly intermediate between beta-convertibility and Boehm Tree equality, the equality in the model P-omega. An analogous approach pertains to Levy-Longo and Berarducci Trees. Our refined Boehm Trees find in particular an application in beta-discriminating fixed point combinators (fpc's). It turns out that Scott's equation BY = BYS is the key to unlocking a plethora of fpc's, generated by a variety of production schemes of which the simplest was found by Boehm, stating that new fpc's are obtained by postfixing the term SI, also known as Smullyan's Owl. We prove that all these newly generated fpc's are indeed new, by considering their clocked BT's. Even so, not all pairs of new fpc's can be discriminated this way. For that purpose we increase the discrimination power by a precision of the clock notion that we call `atomic clock'.Comment: arXiv admin note: substantial text overlap with arXiv:1002.257
    • …
    corecore