292 research outputs found

    Dependence of the optical continuous spectrum of quasars on their red-shift

    Get PDF
    Dependence of optical continuous spectrum of quasi-stellar sources on red shif

    An Induction Accelerator of Cosmic Rays on the Axis of an Accretion Disk

    Get PDF
    The structure and magnitude of the electric field created by a rotating accretion disk with a poloidal magnetic field is found for the case of a vacuum approximation along the axis. The accretion disk is modeled as a torus filled with plasma and the frozen-in magnetic field. The dimensions and location of the maximum electric field are found, as well as the energy of the accelerated particles. The gravitational field is assumed to be weak.Comment: 10 pages, 4 figure

    Radio astronomical space system of aperture synthesis: Filling of the spatial frequency spectrum

    Get PDF
    The information potential of radio astronomical space systems of aperture synthesis is examined. Ground based and space radio telescopes are included

    Synchrotron aging and the radio spectrum of SN 1993J

    Full text link
    We combine the GMRT low frequency radio observations of SN 1993J with the VLA high frequency radio data to get a near simultaneous spectrum around day 3200 since explosion. The low frequency measurements of the supernova determine the turnover frequency and flux scale of the composite spectrum and help reveal a steepening in the spectral index, Δα0.6\Delta \alpha \sim 0.6, in the optically thin part of the spectrum. This is the first observational evidence of a break in the radio spectrum of a young supernova. We associate this break with the phenomenon of synchrotron aging of radiating electrons. From the break in the spectrum we calculate the magnetic field in the shocked region independent of the equipartition assumption between energy density of relativistic particles and magnetic energy density. We determine the ratio of these two energy densities and find that this ratio is in the range: 8×1065×1048\times 10^{-6}-5\times 10^{-4}. We also predict the nature of the evolution of the synchrotron break frequency with time, with competing effects due to diffusive Fermi acceleration and adiabatic expansion of the radiative electron plasma.Comment: 12 pages, 2 figures. Accepted for publication in ApJ

    New analytic models of traversable wormholes

    Full text link
    The analytic solution of the general relativity equations for spherically symmetric wormholes are given. We investigate the special case of a "traversable" wormhole i.e., one allowing the signal to pass through it. The energy-momentum tensor of wormhole matter is represented as a superposition of a spherically symmetric magnetic field and dust matter with negative matter density. The dynamics of the model are investigated. We discuss both the solution of the equation with a Lambda-term and without it. Superposing enough dust matter, a magnetic field, and a Lambda-term can produce a static solution, which turns out to be a spherical Multiverse model with an infinite number of wormholes connected spherical universes. Corresponding solution can be static and dynamic.Comment: 15 pages, 2 figure

    Magnetic fields in AGNs and microquasars

    Get PDF
    Observations of AGNs and microquasars by ASCA, RXTE, Chandra and XMM-Newton indicate the existence of wide X-ray emission lines of heavy ionized elements in their spectra. The emission can arise in the inner parts of accretion discs where the effects of General Relativity (GR) must be counted, moreover such effects can dominate. We describe a procedure to estimate an upper limit of the magnetic fields in the regions where X-ray photons are emitted. We simulate typical profiles of the iron KαK_\alpha line in the presence of a magnetic field and compare them with observational data. As an illustration we find H<10101011H < 10^{10} - 10^{11} Gs for Seyfert galaxy MCG--6--30--15. Using the perspective facilities of measurement devices (e.g. Constellation-X mission) a better resolution of the blue peak structure of iron KαK_\alpha line will allow to find the value of the magnetic fields if the latter are high enough.Comment: 9 pages, 6 figures, submitted to MNRA

    Ultraviolet HST Observations of the Jet in M87

    Full text link
    We present new ultraviolet photometry of the jet in M87 obtained from HST WFPC2 imaging. We combine these ultraviolet data with previously published photometry for the knots of the jet in radio, optical, and X-ray, and fit three theoretical synchrotron models to the full data set. The synchrotron models consistently overpredict the flux in the ultraviolet when fit over the entire dataset. We show that if the fit is restricted to the radio through ultraviolet data, the synchrotron models can provide a good match to the data. The break frequencies of these fits are much lower than previous estimates. The implied synchrotron lifetimes for the bulk of the emitting population are longer than earlier work, but still much shorter than the estimated kinematic lifetimes of the knots. The observed X-ray flux cannot be successfully explained by the simple synchrotron models that fit the ultraviolet and optical fluxes. We discuss the possible implications of these results for the physical properties of the M87 jet. We also observe increased flux for the HST-1 knot that is consistent with previous results for flaring. This observation fills in a significant gap in the time coverage early in the history of the flare, and therefore sets constraints on the initial brightening of the flare.Comment: 14 pages, 2 figures, Accepted for publication in ApJ, changed lightcurve and caption in Figure

    Magnetically-dominated jets inside collapsing stars as a model for gamma-ray bursts and supernova explosions

    Full text link
    It has been suggested that magnetic fields play a dynamically-important role in core-collapse explosions of massive stars. In particular, they may be important in the collapsar scenario for gamma-ray bursts (GRB), where the central engine is a hyper-accreting black hole or a millisecond magnetar. The present paper is focussed on the magnetar scenario, with a specific emphasis on the interaction of the magnetar magnetosphere with the infalling stellar envelope. First, the ``Pulsar-in-a-Cavity'' problem is introduced as a paradigm for a magnetar inside a collapsing star. The basic set-up of this fundamental plasma-physics problem is described, outlining its main features, and simple estimates are derived for the evolution of the magnetic field. In the context of a collapsing star, it is proposed that, at first, the ram pressure of the infalling plasma acts to confine the magnetosphere, enabling a gradual build-up of the magnetic pressure. At some point, the growing magnetic pressure overtakes the (decreasing) ram pressure of the gas, resulting in a magnetically-driven explosion. The explosion should be highly anisotropic, as the hoop-stress of the toroidal field, confined by the surrounding stellar matter, collimates the magnetically-dominated outflow into two beamed magnetic-tower jets. This creates a clean narrow channel for the escape of energy from the central engine through the star, as required for GRBs. In addition, the delayed onset of the collimated-explosion phase can explain the production of large quantities of Nickel-56, as suggested by the GRB-Supernova connection. Finally, the prospects for numerical simulations of this scenario are discussed.Comment: Invited paper in the "Physics of Plasmas" (May 2007 special issue), based on an invited talk at the 48th Annual Meeting of the APS Division of Plasma Physics (Oct. 30 - Nov. 3, 2006, Philadelphia, PA); 24 pages, 7 figure
    corecore