445 research outputs found

    Scalable GPU acceleration of b-spline signal processing operations

    Get PDF
    B-Splines are a useful tool in signal processing, and are widely used in the analysis of two and three-dimensional images. B-Splines provide a continuous representation of the signal, image, or volume, which is useful for interpolation, resampling, noise removal, and differentiation - all important steps in many signal processing algorithms. These splines are defined entirely by an array of coefficients that is roughly the same size as the original signal and of values in the same order of magnitude, making storage and representation trivial. What is not trivial, however, is the quick calculation and processing of those coefficients, especially for very large data. As technology improves in fields such as medical imaging, algorithms that use B-Splines will need to process increasingly higher resolution images and voxel volumes. New implementations are needed to make use of modern parallel architectures to keep these algorithms practical. This thesis presents a library for performing many common B-Splines operations in CUDA, the parallel programming framework for NVIDIA GPUs, and analyzes the considerations necessary when implementing a large-scale parallel version of such a well-established sequential algorithm. This library is meant to be used both by C++ programs as well as algorithms implemented in MATLAB without requiring significant changes. Significant speedups are obtained using this library to perform various common B-Spline image processing operations (as much as 30x for some), and the scalability limitations of the GPU implementation are addressed

    ATG proteins mediate efferocytosis and suppress inflammation in mammary involution.

    Get PDF
    Involution is the process of post-lactational mammary gland regression to quiescence and it involves secretory epithelial cell death, stroma remodeling and gland repopulation by adipocytes. Though reportedly accompanying apoptosis, the role of autophagy in involution has not yet been determined. We now report that autophagy-related (ATG) proteins mediate dead cell clearance and suppress inflammation during mammary involution. In vivo, Becn1(+/-) and Atg7-deficient mammary epithelial cells (MECs) produced 'competent' apoptotic bodies, but were defective phagocytes in association with reduced expression of the MERTK and ITGB5 receptors, thus pointing to defective apoptotic body engulfment. Atg-deficient tissues exhibited higher levels of involution-associated inflammation, which could be indicative of a tumor-modulating microenvironment, and developed ductal ectasia, a manifestation of deregulated post-involution gland remodeling. In vitro, ATG (BECN1 or ATG7) knockdown compromised MEC-mediated apoptotic body clearance in association with decreased RAC1 activation, thus confirming that, in addition to the defective phagocytic processing reported by other studies, ATG protein defects also impair dead cell engulfment. Using two different mouse models with mammary gland-associated Atg deficiencies, our studies shed light on the essential role of ATG proteins in MEC-mediated efferocytosis during mammary involution and provide novel insights into this important developmental process. This work also raises the possibility that a regulatory feedback loop exists, by which the efficacy of phagocytic cargo processing in turn regulates the rate of engulfment and ultimately determines the kinetics of phagocytosis and dead cell clearance

    ERBB2 overexpression suppresses stress-induced autophagy and renders ERBB2-induced mammary tumorigenesis independent of monoallelicBecn1loss

    Get PDF
    Defective autophagy has been implicated in mammary tumorigenesis, as the gene encoding the essential autophagy regulator BECN1 is deleted in human breast cancers and Becn1+/− mice develop mammary hyperplasias. In agreement with a recent study, which reports concurrent allelic BECN1 loss and ERBB2 amplification in a small number of human breast tumors, we found that low BECN1 mRNA correlates with ERBB2-overexpression in breast cancers, suggesting that BECN1 loss and ERBB2 overexpression may functionally interact in mammary tumorigenesis. We now report that ERBB2 overexpression suppressed autophagic response to stress in mouse mammary and human breast cancer cells. ERBB2-overexpressing Becn1+/+ and Becn1+/− immortalized mouse mammary epithelial cells (iMMECs) formed mammary tumors in nude mice with similar kinetics, and monoallelic Becn1 loss did not alter ERBB2- and PyMT-driven mammary tumorigenesis. In human breast cancer databases, ERBB2-expressing tumors exhibit a low autophagy gene signature, independent of BECN1 mRNA expression, and have similar gene expression profiles with non-ERBB2-expressing breast tumors with low BECN1 levels. We also found that ERBB2-expressing BT474 breast cancer cells, despite being partially autophagy-deficient under stress, can be sensitized to the anti-ERBB2 antibody trastuzumab (tzb) by further pharmacological or genetic autophagy inhibition. Our results indicate that ERBB2-driven mammary tumorigenesis is associated with functional autophagy suppression and ERBB2-positive breast cancers are partially autophagy-deficient even in a wild-type BECN1 background. Furthermore and extending earlier findings using tzb-resistant cells, exogenously imposed autophagy inhibition increases the anticancer effect of trastuzumab on tzb-sensitive ERBB2-expressing breast tumor cells, indicating that pharmacological autophagy suppression has a wider role in the treatment of ERBB2-positive breast cancer

    Rhomboid family member 2 regulates cytoskeletal stress-associated Keratin 16.

    Get PDF
    Keratin 16 (K16) is a cytoskeletal scaffolding protein highly expressed at pressure-bearing sites of the mammalian footpad. It can be induced in hyperproliferative states such as wound healing, inflammation and cancer. Here we show that the inactive rhomboid protease RHBDF2 (iRHOM2) regulates thickening of the footpad epidermis through its interaction with K16. K16 expression is absent in the thinned footpads of irhom2-/- mice compared with irhom2+/+mice, due to reduced keratinocyte proliferation. Gain-of-function mutations in iRHOM2 underlie Tylosis with oesophageal cancer (TOC), characterized by palmoplantar thickening, upregulate K16 with robust downregulation of its type II keratin binding partner, K6. By orchestrating the remodelling and turnover of K16, and uncoupling it from K6, iRHOM2 regulates the epithelial response to physical stress. These findings contribute to our understanding of the molecular mechanisms underlying hyperproliferation of the palmoplantar epidermis in both physiological and disease states, and how this 'stress' keratin is regulated

    Functionally heterogeneous human satellite cells identified by single cell RNA sequencing.

    Get PDF
    Although heterogeneity is recognized within the murine satellite cell pool, a comprehensive understanding of distinct subpopulations and their functional relevance in human satellite cells is lacking. We used a combination of single cell RNA sequencing and flow cytometry to identify, distinguish, and physically separate novel subpopulations of human PAX7+ satellite cells (Hu-MuSCs) from normal muscles. We found that, although relatively homogeneous compared to activated satellite cells and committed progenitors, the Hu-MuSC pool contains clusters of transcriptionally distinct cells with consistency across human individuals. New surface marker combinations were enriched in transcriptional subclusters, including a subpopulation of Hu-MuSCs marked by CXCR4/CD29/CD56/CAV1 (CAV1+). In vitro, CAV1+ Hu-MuSCs are morphologically distinct, and characterized by resistance to activation compared to CAV1- Hu-MuSCs. In vivo, CAV1+ Hu-MuSCs demonstrated increased engraftment after transplantation. Our findings provide a comprehensive transcriptional view of normal Hu-MuSCs and describe new heterogeneity, enabling separation of functionally distinct human satellite cell subpopulations

    Pembrolizumab monotherapy for previously treated metastatic triple-negative breast cancer: cohort A of the phase II KEYNOTE-086 study

    Get PDF
    ABSTRACT Background Treatment options for previously treated metastatic triple-negative breast cancer (mTNBC) are limited. In cohort A of the phase II KEYNOTE-086 study, we evaluated pembrolizumab as second or later line of treatment for patients with mTNBC. Patients and methods Eligible patients had centrally confirmed mTNBC, ≥1 systemic therapy for metastatic disease, prior treatment with anthracycline and taxane in any disease setting, and progression on or after the most recent therapy. Patients received pembrolizumab 200 mg intravenously every 3 weeks for up to 2 years. Primary end points were objective response rate in the total and PD-L1–positive populations, and safety. Secondary end points included duration of response, disease control rate (percentage of patients with complete or partial response or stable disease for ≥24 weeks), progression-free survival, and overall survival. Results All enrolled patients (N = 170) were women, 61.8% had PD-L1–positive tumors, and 43.5% had received ≥3 previous lines of therapy for metastatic disease. ORR (95% CI) was 5.3% (2.7–9.9) in the total and 5.7% (2.4–12.2) in the PD-L1–positive populations. Disease control rate (95% CI) was 7.6% (4.4–12.7) and 9.5% (5.1–16.8), respectively. Median duration of response was not reached in the total (range, 1.2+–21.5+) and in the PD-L1–positive (range, 6.3–21.5+) populations. Median PFS was 2.0 months (95% CI, 1.9–2.0), and the 6-month rate was 14.9%. Median OS was 9.0 months (95% CI, 7.6–11.2), and the 6-month rate was 69.1%. Treatment-related adverse events occurred in 103 (60.6%) patients, including 22 (12.9%) with grade 3 or 4 AEs. There were no deaths due to AEs. Conclusions Pembrolizumab monotherapy demonstrated durable antitumor activity in a subset of patients with previously treated mTNBC and had a manageable safety profile. Clinical trial registration ClinicalTrials.gov, NCT0244700

    Colorectal cancer-related mutant KRAS alleles function as positive regulators of autophagy

    Get PDF
    The recent interest to modulate autophagy in cancer therapy has been hampered by the dual roles of this conserved catabolic process in cancer, highlighting the need for tailored approaches. Since RAS isoforms have been implicated in autophagy regulation and mutation of the KRAS oncogene is highly frequent in colorectal cancer (CRC), we questioned whether/how mutant KRAS alleles regulate autophagy in CRC and its implications. We established two original models, KRAS-humanized yeast and KRAS-non-cancer colon cells and showed that expression of mutated KRAS up-regulates starvation-induced autophagy in both. Accordingly, KRAS down-regulation inhibited autophagy in CRC-derived cells harboring KRAS mutations. We further show that KRAS-induced autophagy proceeds via up-regulation of the MEK/ERK pathway in both colon models and that KRAS and autophagy contribute to CRC cell survival during starvation. Since KRAS inhibitors have proven difficult to develop, our results suggest using autophagy inhibitors as a combined/alternative therapeutic approach in CRCs with mutant KRAS.This work was supported by FCT/MEC through Portuguese funds (PIDDAC) - PEst-OE/BIA/UI4050/2014 and FCT I.P. through the strategic funding UID/BIA/04050/2013 as well as by FCT through projects PTDC/BIA-BCM/69448/2006 and FCT-ANR/BEX-BCM/0175/2012, as well as fellowships to S.A. (SFRH/BD/64695/2009) and S.R.C. (SFRH/BPD/89980/2012).info:eu-repo/semantics/publishedVersio

    Fluorogenic Trp(redBODIPY) cyclopeptide targeting keratin 1 for imaging of aggressive carcinomas

    Get PDF
    Keratin 1 (KRT1) is overexpressed in squamous carcinomas and associated with aggressive pathologies in breast cancer. Herein we report the design and preparation of the first Trp-based red fluorogenic amino acid, which is synthetically accessible in a few steps and displays excellent photophysical properties, and its application in a minimally-disruptive labelling strategy to prepare a new fluorogenic cyclopeptide for imaging of KRT1+ cells in whole intact tumour tissues

    Oxidized low-density lipoproteins upregulate proline oxidase to initiate ROS-dependent autophagy

    Get PDF
    Epidemiological studies showed that high levels of oxidized low-density lipoproteins (oxLDLs) are associated with increased cancer risk. We examined the direct effect of physiologic concentrations oxLDL on cancer cells. OxLDLs were cytotoxic and activate both apoptosis and autophagy. OxLDLs have ligands for peroxisome proliferator-activated receptor gamma and upregulated proline oxidase (POX) through this nuclear receptor. We identified 7-ketocholesterol (7KC) as a main component responsible for the latter. To elucidate the role of POX in oxLDL-mediated cytotoxicity, we knocked down POX via small interfering RNA and found that this (i) further reduced viability of cancer cells treated with oxLDL; (ii) decreased oxLDL-associated reactive oxygen species generation; (iii) decreased autophagy measured via beclin-1 protein level and light-chain 3 protein (LC3)-I into LC3-II conversion. Using POX-expressing cell model, we established that single POX overexpression was sufficient to activate autophagy. Thus, it led to autophagosomes accumulation and increased conversion of LC3-I into LC3-II. Moreover, beclin-1 gene expression was directly dependent on POX catalytic activity, namely the generation of POX-dependent superoxide. We conclude that POX is critical in the cellular response to the noxious effects of oxLDL by activating protective autophagy
    corecore