884 research outputs found

    Discussion of: A statistical analysis of multiple temperature proxies: Are reconstructions of surface temperatures over the last 1000 years reliable?

    Full text link
    Discussion of "A statistical analysis of multiple temperature proxies: Are reconstructions of surface temperatures over the last 1000 years reliable?" by B.B. McShane and A.J. Wyner [arXiv:1104.4002]Comment: Published in at http://dx.doi.org/10.1214/10-AOAS398M the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Reply to “Comments on ‘Erroneous Model Field Representations in Multiple Pseudoproxy Studies: Corrections and Implications’”

    Get PDF
    The commenters confirm the errors identified and discussed in Smerdon et al., which either invalidated or required the reinterpretation of quantitative results from pseudoproxy experiments presented or used in several earlier papers. These errors have a strong influence on the spatial skill assessments of climate field reconstructions (CFRs), despite their small impacts on skill statistics averaged over the Northern Hemisphere. On the basis of spatial performance and contrary to the claim by the commenters, the Regularized Expectation Maximization method using truncated total least squares (RegEM-TTLS) cannot be considered a preferred CFR technique. Moreover, distinctions between CFR methods in the context of the discussion in the original paper are immaterial. Continued investigations using accurately described and faithfully executed pseudoproxy experiments are critical for further evaluation and improvement of CFR methods

    X(3872): Hadronic Molecules in Effective Field Theory

    Full text link
    We consider the implications from the possibility that the recently observed state X(3872) is a meson-antimeson molecule. We write an effective Lagrangian consistent with the heavy-quark and chiral symmetries needed to describe X(3872). We claim that if X(3872) is a molecular bound state of D^*0 and anti-D^0 mesons, the heavy-quark symmetry requires the existence of the molecular bound state X_b of B^*0 and anti-B^0 with the mass of 10604 MeV.Comment: 12 pages, 1 figure, 1 table, RevTe

    Using of Magnetron Sputtering for Biocompatible Composites Creating

    Get PDF
    Biocompatible composites obtained using the magnetron sputtering for the production of minimally invasive implantation medical devices (stents) were investigated. Nano- and microdimensional surface layers of Ta, Ti, Ag, and Cu on flat and wire NiTi, Cu, Ti, and SiO2 substrates were created. The phase composition, surface morphology, and the layer-by-layer composition were investigated on an X-ray diffractometer, SEM, and Auger spectrometer. It was shown that the thickness and the structure of surface layers were affected by the sputtering distance, time, power, and the bias voltage at the substrate. The presence of the transition layer that contains both substrate and target elements and provides high adhesion of the surface layer to the substrate has been demonstrated. The material was tested for corrosion resistance under static conditions by dipping into solutions with various acidities (pH from 1.68 to 9.18) for 2 years, static mechanical properties, and biocompatibility in vitro and in vivo. A slight corrosive dissolution was observed only in a medium with a pH of 1.56. Dissolution in the other media is absent. An increase in strength and plasticity in comparison with substrate was attained depending on the nature of the sputtered substance and substrate. Toxicity of samples has not been revealed

    Giant Faraday rotation in single- and multilayer graphene

    Full text link
    Optical Faraday rotation is one of the most direct and practically important manifestations of magnetically broken time-reversal symmetry. The rotation angle is proportional to the distance traveled by the light, and up to now sizeable effects were observed only in macroscopically thick samples and in two-dimensional electron gases with effective thicknesses of several nanometers. Here we demonstrate that a single atomic layer of carbon - graphene - turns the polarization by several degrees in modest magnetic fields. The rotation is found to be strongly enhanced by resonances originating from the cyclotron effect in the classical regime and the inter-Landau-level transitions in the quantum regime. Combined with the possibility of ambipolar doping, this opens pathways to use graphene in fast tunable ultrathin infrared magneto-optical devices
    corecore