53 research outputs found

    Long-range and selective coupler for superconducting flux qubits

    Full text link
    We propose a qubit-qubit coupling scheme for superconducting flux quantum bits (qubits), where a quantized Josephson junction resonator and microwave irradiation are utilized. The junction is used as a tunable inductance controlled by changing the bias current flowing through the junction, and thus the circuit works as a tunable resonator. This enables us to make any qubits interact with the resonator. Entanglement between two of many qubits whose level splittings satisfy some conditions, is formed by microwave irradiation causing a two-photon Rabi oscillation. Since the size of the resonator can be as large as sub-millimeters and qubits interact with it via mutual inductance, our scheme makes it possible to construct a quantum gate involving remote qubitsComment: 8 pages, 4 figure

    Quantum Zeno effect with a superconducting qubit

    Full text link
    Detailed schemes are investigated for experimental verification of Quantum Zeno effect with a superconducting qubit. A superconducting qubit is affected by a dephasing noise whose spectrum is 1/f, and so the decay process of a superconducting qubit shows a naturally non-exponential behavior due to an infinite correlation time of 1/f noise. Since projective measurements can easily influence the decay dynamics having such non-exponential feature, a superconducting qubit is a promising system to observe Quantum Zeno effect. We have studied how a sequence of projective measurements can change the dephasing process and also we have suggested experimental ways to observe Quantum Zeno effect with a superconducting qubit. It would be possible to demonstrate our prediction in the current technology

    Spatially Resolved NMR Relaxation Rate in a Noncentrosymmetric Superconductor

    Full text link
    We numerically study the spatially-resolved NMR around a single vortex in a noncentrosymmetric superconductor such as CePt3Si. The nuclear spin-lattice relaxation rate 1/T1 under the influence of the vortex core states is calculated for an s+p-wave Cooper pairing state. The result is compared with that for an s-wave pairing state.Comment: 2 pages; submitted to Proc. of SCES'0

    Dephasing of a superconducting flux qubit

    Full text link
    In order to gain a better understanding of the origin of decoherence in superconducting flux qubits, we have measured the magnetic field dependence of the characteristic energy relaxation time (T1T_1) and echo phase relaxation time (T2echoT_2^{\rm echo}) near the optimal operating point of a flux qubit. We have measured T2echoT_2^{\rm echo} by means of the phase cycling method. At the optimal point, we found the relation T2echo≈2T1T_2^{\rm echo}\approx 2T_1. This means that the echo decay time is {\it limited by the energy relaxation} (T1T_1 process). Moving away from the optimal point, we observe a {\it linear} increase of the phase relaxation rate (1/T2echo1/T_{2}^{\rm echo}) with the applied external magnetic flux. This behavior can be well explained by the influence of magnetic flux noise with a 1/f1/f spectrum on the qubit

    Dephasing of a superconducting flux qubit

    Get PDF

    Site-selective 63^{63}Cu NMR study of the vortex cores of Tl2_{2}Ba2_{2}CuO6+δ_{6+\delta}

    Full text link
    We report site-selective 63^{63}Cu NMR studies of the vortex core states of an overdoped Tl2_{2}Ba2_{2}CuO6+δ_{6+\delta} with TcT_{c} = 85 K. We observed a relatively high density of low-energy quasi-particle excitations at the vortex cores in a magnetic field of 7.4847 T along the c axis, in contrast to YBa2_{2}Cu3_{3}O7−δ_{7-\delta}.Comment: 5 pages, 6 figures, submitted to J. Phys. Chem. Solids (QuB2006, Tokai

    Phase-Coherent Dynamics of a Superconducting Flux Qubit with Capacitive-Bias Readout

    Full text link
    We present a systematic study of the phase-coherent dynamics of a superconducting three-Josephson-junction flux qubit. The qubit state is detected with the integrated-pulse method, which is a variant of the pulsed switching DC SQUID method. In this scheme the DC SQUID bias current pulse is applied via a capacitor instead of a resistor, giving rise to a narrow band-pass instead of a pure low-pass filter configuration of the electromagnetic environment. Measuring one and the same qubit with both setups allows a direct comparison. With the capacitive method about four times faster switching pulses and an increased visibility are achieved. Furthermore, the deliberate engineering of the electromagnetic environment, which minimizes the noise due to the bias circuit, is facilitated. Right at the degeneracy point the qubit coherence is limited by energy relaxation. We find two main noise contributions. White noise is limiting the energy relaxation and contributing to the dephasing far from the degeneracy point. 1/f-noise is the dominant source of dephasing in the direct vicinity of the optimal point. The influence of 1/f-noise is also supported by non-random beatings in the Ramsey and spin echo decay traces. Numeric simulations of a coupled qubit-oscillator system indicate that these beatings are due to the resonant interaction of the qubit with at least one point-like fluctuator, coupled especially strongly to the qubit.Comment: Minor changes. 21 pages, 15 figure
    • …
    corecore