10 research outputs found

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Enzyme Responsive Vaginal Microbicide Gels Containing Maraviroc and Tenofovir Microspheres Designed for Acid Phosphatase-Triggered Release for Pre-Exposure Prophylaxis of HIV-1: A Comparative Analysis of a Bigel and Thermosensitive Gel

    No full text
    The challenges encountered with conventional microbicide gels has necessitated the quest for alternative options. This study aimed to formulate and evaluate a bigel and thermosensitive gel, designed to combat the challenges of leakage and short-residence time in the vagina. Ionic-gelation technique was used to formulate maraviroc and tenofovir microspheres. The microspheres were incorporated into a thermosensitive gel and bigel, then evaluated. Enzyme degradation assay was used to assess the effect of the acid phosphatase enzyme on the release profile of maraviroc and tenofovir microspheres. HIV efficacy and cytotoxicity of the microspheres were assessed using HIV-1-BaL virus strain and HeLa cell lines, respectively. Maraviroc and tenofovir release kinetics followed zero-order and Higuchi model kinetics. However, under the influence of the enzyme, maraviroc release was governed by first-order model, while tenofovir followed a super case II transport-mechanism. The altered mode of release and drug transport mechanism suggests a triggered release. The assay of the microspheres suspension on the HeLa cells did not show signs of cytotoxicity. The thermosensitive gel and bigel elicited a progressive decline in HIV infectivity, until at concentrations of 1 μg/mL and 0.1 μg/mL, respectively. The candidate vaginal gels have the potential for a triggered release by the acid phosphatase enzyme present in the seminal fluid, thus, serving as a strategic point to prevent HIV transmission

    Parasitic helminth infections in humans modulate Trefoil Factor levels in a manner dependent on the species of parasite and age of the host.

    No full text
    Helminth infections, including hookworms and Schistosomes, can cause severe disability and death. Infection management and control would benefit from identification of biomarkers for early detection and prognosis. While animal models suggest that Trefoil Factor Family proteins (TFF2 and TFF3) and interleukin-33 (IL-33) -driven type 2 immune responses are critical mediators of tissue repair and worm clearance in the context of hookworm infection, very little is known about how they are modulated in the context of human helminth infection. We measured TFF2, TFF3, and IL-33 levels in serum from patients in Brazil infected with Hookworm and/or Schistosomes, and compared them to endemic and non-endemic controls. TFF2 was specifically elevated by Hookworm infection in females, not Schistosoma or co-infection. This elevation was correlated with age, but not worm burden. TFF3 was elevated by Schistosoma infection and found to be generally higher in females. IL-33 was not significantly altered by infection. To determine if this might apply more broadly to other species or regions, we measured TFFs and cytokine levels (IFNγ, TNFα, IL-33, IL-13, IL-1β, IL-17A, IL-22, and IL-10) in both the serum and urine of Nigerian school children infected with S. haematobium. We found that serum levels of TFF2 and 3 were reduced by infection, likely in an age dependent manner. In the serum, only IL-10 and IL-13 were significantly increased, while in urine IFN-γ, TNF-α, IL-13, IL-1β, IL-22, and IL-10 were significantly increased in by infection. Taken together, these data support a role for TFF proteins in human helminth infection

    Prevalence and Risk Factors of Genital Human Papillomavirus Infections among Women in Lagos, Nigeria

    No full text
    Regional variations exist in HPV prevalence worldwide despite reports of high prevalence rates among African women. Limited data on genital HPV prevalence necessitated this study with the aim of determining the prevalence of genital HPV and associated risk factors among women in Lagos, Nigeria. Exfoliated cervical cells were collected with consent from 165 women using a cervical brush. Viral DNA was extracted and amplified by nested PCR using two sets of consensus primers (MY09/11 and GP5+/6+). An unconditional logistic regression model was used to identify predictors of HPV positivity. The HPV prevalence was 81.82% in all women and 87.59% in women with normal cytology. The risk of HPV infection was significantly increased among women who had a history of STI (odds ratio (OR) 3.94; 95% confidence interval (CI): 1.51–10.25, p = 0.005) while there was a significantly reduced risk of HPV infection among those who used condoms (odds ratio (OR) 3.94; 95% confidence interval (CI): 0.18–0.91, p = 0.03). The HPV prevalence observed shows an increased transmission of the virus in Lagos, Nigeria. Therefore, there is a need for intense public awareness and the implementation of early detection tests, treatment, and vaccination to prevent an increase in cervical cancer cases in Lagos, Nigeria

    Low level SARS-CoV-2 RNA detected in plasma samples from a cohort of Nigerians: Implications for blood transfusion.

    No full text
    The present global pandemic triggered by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has lingered for over a year in its devastating effects. Diagnosis of coronavirus disease 2019 (COVID-19) is currently established with a polymerase chain reaction (PCR) test by means of oropharyngeal-, nasopharyngeal-, anal-swabs, sputum and blood plasma. However, oral and nasal swabs are more commonly used. This study, therefore, assessed sensitivity and specificity of plasma as a diagnostic in comparison with a combination of oral and nasal swab samples, and the implications for blood transfusion. Oropharyngeal (OP) and nasopharyngeal (NP) swab samples were obtained from 125 individuals suspected to have COVID-19 and stored in viral transport medium (VTM) tubes. Ten millilitres of blood samples in EDTA were also obtained by venepuncture and spun to obtain plasma. Viral RNA was obtained from both swabs and plasma by manual extraction with Qiagen QIAamp viral RNA Mini Kit. Detection was done using a real time fluorescent RT-qPCR BGI kit, on a QuantStudio 3 real-time PCR instrument. Average age of study participants was 41 years, with 74 (59.2%) being male. Out of the 125 individuals tested for COVID-19, 75 (60%) were positive by OP/NP swab. However, only 6 (4.8%) had a positive plasma result for COVID-19 with median Ct value of 32.4. Sensitivity and specificity of RT-PCR SARS-CoV-2 test using plasma was 8% and 100% respectively. There was no false positive recorded, but 69 (55.2%) false negatives were obtained by plasma. SARS-CoV-2 viral RNA was detected, albeit low (4.8%) in plasma. Plasma is likely not a suitable biological sample to diagnose acute SARS-CoV-2 infection. The implication of transfusing blood in this era of COVID-19 needs further investigations

    Full length genomic sanger sequencing and phylogenetic analysis of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) in Nigeria.

    No full text
    In an outbreak, effective detection of the aetiological agent(s) involved using molecular techniques is key to efficient diagnosis, early prevention and management of the spread. However, sequencing is necessary for mutation monitoring and tracking of clusters of transmission, development of diagnostics and for vaccines and drug development. Many sequencing methods are fast evolving to reduce test turn-around-time and to increase through-put compared to Sanger sequencing method; however, Sanger sequencing remains the gold standard for clinical research sequencing with its 99.99% accuracy This study sought to generate sequence data of SARS-CoV-2 using Sanger sequencing method and to characterize them for possible site(s) of mutations. About 30 pairs of primers were designed, synthesized, and optimized using endpoint PCR to generate amplicons for the full length of the virus. Cycle sequencing using BigDye Terminator v.3.1 and capillary gel electrophoresis on ABI 3130xl genetic analyser were performed according to the manufacturers' instructions. The sequence data generated were assembled and analysed for variations using DNASTAR Lasergene 17 SeqMan Ultra. Total length of 29,760bp of SARS-CoV-2 was assembled from the sample analysed and deposited in GenBank with accession number: MT576584. Blast result of the sequence assembly shows a 99.97% identity with the reference sequence. Variations were noticed at positions: nt201, nt2997, nt14368, nt16535, nt20334, and nt28841-28843, which caused amino acid alterations at the S (aa614) and N (aa203-204) regions. The mutations observed at S and N-gene in this study may be indicative of a gradual changes in the genetic coding of the virus hence, the need for active surveillance of the viral genome

    Comparative performance of SARS-CoV-2 real-time PCR diagnostic assays on samples from Lagos, Nigeria.

    No full text
    A key element in containing the spread of the SARS-CoV-2 infection is quality diagnostics which is affected by several factors. We now report the comparative performance of five real-time diagnostic assays. Nasopharyngeal swab samples were obtained from persons seeking a diagnosis for SARS-CoV-2 infection in Lagos, Nigeria. The comparison was performed on the same negative, low, and high-positive sample set, with viral RNA extracted using the Qiagen Viral RNA Kit. All five assays are one-step reverse transcriptase real-time PCR assays. Testing was done according to each assay's manufacturer instructions for use using real-time PCR platforms. 63 samples were tested using the five qPCR assays, comprising of 15 negative samples, 15 positive samples (Ct = 16-30; one Ct = 35), and 33 samples with Tib MolBiol E-gene Ct value ranging from 36-41. All assays detected all high positive samples correctly. Three assays correctly identified all negative samples while two assays each failed to correctly identify one different negative sample. The consistent detection of positive samples at different Ct/Cq values gives an indication of when to repeat testing and/or establish more stringent in-house cut-off value. The varied performance of different diagnostic assays, mostly with emergency use approvals, for a novel virus is expected. Comparative assays' performance reported may guide laboratories to determine both their repeat testing Ct/Cq range and/or cut-off value

    SARS-COV-2 antibody responses to AZD1222 vaccination in West Africa.

    Get PDF
    Real-world data on vaccine-elicited neutralising antibody responses for two-dose AZD1222 in African populations are limited. We assessed baseline SARS-CoV-2 seroprevalence and levels of protective neutralizing antibodies prior to vaccination rollout using binding antibodies analysis coupled with pseudotyped virus neutralisation assays in two cohorts from West Africa: Nigerian healthcare workers (n = 140) and a Ghanaian community cohort (n = 527) pre and post vaccination. We found 44 and 28% of pre-vaccination participants showed IgG anti-N positivity, increasing to 59 and 39% respectively with anti-receptor binding domain (RBD) IgG-specific antibodies. Previous IgG anti-N positivity significantly increased post two-dose neutralizing antibody titres in both populations. Serological evidence of breakthrough infection was observed in 8/49 (16%). Neutralising antibodies were observed to wane in both populations, especially in anti-N negative participants with an observed waning rate of 20% highlighting the need for a combination of additional markers to characterise previous infection. We conclude that AZD1222 is immunogenic in two independent West African cohorts with high background seroprevalence and incidence of breakthrough infection in 2021. Waning titres post second dose indicates the need for booster dosing after AZD1222 in the African setting despite hybrid immunity from previous infection

    Time to establish an international vaccine candidate pool for potential highly infectious respiratory disease: a community’s view

    No full text
    Summary: In counteracting highly infectious and disruptive respiratory diseases such as COVID-19, vaccination remains the primary and safest way to prevent disease, reduce the severity of illness, and save lives. Unfortunately, vaccination is often not the first intervention deployed for a new pandemic, as it takes time to develop and test vaccines, and confirmation of safety requires a period of observation after vaccination to detect potential late-onset vaccine-associated adverse events. In the meantime, nonpharmacologic public health interventions such as mask-wearing and social distancing can provide some degree of protection. As climate change, with its environmental impacts on pathogen evolution and international mobility continue to rise, highly infectious respiratory diseases will likely emerge more frequently and their impact is expected to be substantial. How quickly a safe and efficacious vaccine can be deployed against rising infectious respiratory diseases may be the most important challenge that humanity will face in the near future. While some organizations are engaged in addressing the World Health Organization's ''blueprint for priority diseases'', the lack of worldwide preparedness, and the uncertainty around universal vaccine availability, remain major concerns. We therefore propose the establishment of an international candidate vaccine pool repository for potential respiratory diseases, supported by multiple stakeholders and countries that contribute facilities, technologies, and other medical and financial resources. The types and categories of candidate vaccines can be determined based on information from previous pandemics and epidemics. Each participant country or region can focus on developing one or a few vaccine types or categories, together covering most if not all possible potential infectious diseases. The safety of these vaccines can be tested using animal models. Information for effective candidates that can be potentially applied to humans will then be shared across all participants. When a new pandemic arises, these pre-selected and tested vaccines can be quickly tested in RCTs for human populations
    corecore