5,570 research outputs found

    A Scanning Transmission X-ray Microscopy Study of Cubic and Orthorhombic C₃A and Their Hydration Products in the Presence of Gypsum.

    Get PDF
    This paper shows the microstructural differences and phase characterization of pure phases and hydrated products of the cubic and orthorhombic (Na-doped) polymorphs of tricalcium aluminate (C₃A), which are commonly found in traditional Portland cements. Pure, anhydrous samples were characterized using scanning transmission X-ray microscopy (STXM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) and demonstrated differences in the chemical and mineralogical composition as well as the morphology on a micro/nano-scale. C₃A/gypsum blends with mass ratios of 0.2 and 1.9 were hydrated using a water/C₃A ratio of 1.2, and the products obtained after three days were assessed using STXM. The hydration process and subsequent formation of calcium sulfate in the C₃A/gypsum systems were identified through the changes in the LIII edge fine structure for Calcium. The results also show greater Ca LII binding energies between hydrated samples with different gypsum contents. Conversely, the hydrated samples from the cubic and orthorhombic C₃A at the same amount of gypsum exhibited strong morphological differences but similar chemical environments

    Seasonal and depth-driven changes in rhodolith bed structure and associated macroalgae off Arvoredo island (southeastern Brazil)

    Get PDF
    Rhodoliths are formed by coralline red algae and can form heterogeneous substrata with high biodiversity. Here we describe a rhodolith bed at the southern limit of the known distribution of this habitat in the western Atlantic. We characterized rhodolith and macroalgal assemblages at 5, 10 and 15. m depth during summer and winter. Lithothamnion crispatum was dominant amongst the six rhodolith-forming species present. Most rhodoliths were spheroidal in shape indicating high mobility due to water movement. Rhodolith density decreased with increasing depth and during winter. Turf-forming seaweeds accounted for 60% of the biomass growing on rhodoliths. Macroalgae increased abundance and richness in the summer, but was similar between 5 and 15. m depth. They were less abundant and diverse than that recorded in rhodolith beds further north in Brazil. Both, season and depth, affected the structure of the macroalgae assemblages. We conclude that Lithothamniom is the most representative genus of Brazilian rhodolith beds. Summer is responsible for increasing the diversity and richness of macroalgae, as well as increasing rhodolith density. © 2013 Elsevier B.V

    The effect of plant age on the chemical composition of fresh and ensiled Agave salmiana leaves

    Get PDF
    In the first study dry matter (DM), organic matter, crude protein (CP), neutral detergent fibre (NDF) and soluble carbohydrate (SC) concentrations were determined in whole leaves and the upper and lower sections of whole leaves of the Agave salmiana (Otto ex. Salm-Dyck) plant. The pH and saponin concentration were measured in aqueous extracts from these leaves. The leaves were collected from plants at the young (ca. 12 years old), bud (ca. 14 years old) and mature (ca. 16 years old) stages of growth. The CP level of young Agave (48 g/kg DM) leaves was higher than in leaves from the bud (38 g/kg DM) and mature (43 g/kg DM) stages, and higher in the upper (51 g/kg DM) than in the lower (35 g/kg DM) leaf sections. The leaves at the bud stage contained lower NDF (189 g/kg DM) but higher SC (358 g/kg DM) levels than those of mature (272 g NDF, 247 g SC/kg DM) and young (273 g NDF, 189 g SC) plants. The saponin content of leaves was higher in the mature (11.1 g/kg DM) than in the bud stage (7.5 g/kg DM). In the second study the chemical composition of whole leaves from young, bud and mature micro-ensilaged (3.5 kg as fed) Agave was determined over a 36 weeks fermentation period. Agave silage had acceptable chemical characteristics. As time of fermentation increased, a linear decrease in DM and saponin concentration, a linear increase in NDF and lactic acid levels and a quadratic increase of pH values and ammonia-N concentrations were recorded. Both fresh and ensilaged leaves of the mature and the bud stages were the most desirable maturity stages of Agave to be utilised as feed for ruminants. Keywords: Agave salmiana, chemical composition, magueySouth African Journal of Animal Science Vol. 38 (1) 2008: pp. 43-5

    A disk of dust and molecular gas around a high-mass protostar

    Full text link
    The processes leading to the birth of low-mass stars such as our Sun have been well studied, but the formation of high-mass (> 8 x Sun's mass) stars has heretofore remained poorly understood. Recent observational studies suggest that high-mass stars may form in essentially the same way as low-mass stars, namely via an accretion process, instead of via merging of several low-mass (< 8 Msun) stars. However, there is as yet no conclusive evidence. Here, we report the discovery of a flattened disk-like structure observed at submillimeter wavelengths, centered on a massive 15 Msun protostar in the Cepheus-A region. The disk, with a radius of about 330 astronomical units (AU) and a mass of 1 to 8 Msun, is detected in dust continuum as well as in molecular line emission. Its perpendicular orientation to, and spatial coincidence with the central embedded powerful bipolar radio jet, provides the best evidence yet that massive stars form via disk accretion in direct analogy to the formation of low-mass stars

    Acquisition of functions on the outer capsid surface during evolution of double-stranded RNA fungal viruses

    Get PDF
    Unlike their counterparts in bacterial and higher eukaryotic hosts, most fungal viruses are transmitted intracellularly and lack an extracellular phase. Here we determined the cryo-EM structure at 3.7 Å resolution of Rosellinia necatrix quadrivirus 1 (RnQV1), a fungal double-stranded (ds)RNA virus. RnQV1, the type species of the family Quadriviridae, has a multipartite genome consisting of four monocistronic segments. Whereas most dsRNA virus capsids are based on dimers of a single protein, the ~450-Å-diameter, T = 1 RnQV1 capsid is built of P2 and P4 protein heterodimers, each with more than 1000 residues. Despite a lack of sequence similarity between the two proteins, they have a similar α-helical domain, the structural signature shared with the lineage of the dsRNA bluetongue virus-like viruses. Domain insertions in P2 and P4 preferential sites provide additional functions at the capsid outer surface, probably related to enzyme activity. The P2 insertion has a fold similar to that of gelsolin and profilin, two actin-binding proteins with a function in cytoskeleton metabolism, whereas the P4 insertion suggests protease activity involved in cleavage of the P2 383-residue C-terminal region, absent in the mature viral particle. Our results indicate that the intimate virus-fungus partnership has altered the capsid genome-protective and/or receptor-binding functions. Fungal virus evolution has tended to allocate enzyme activities to the virus capsid outer surface

    Reaction pathways and textural aspects of the replacement of anhydrite by calcite at 25 °C

    Get PDF
    The replacement of sulfate minerals by calcium carbonate polymorphs (carbonation) has important implications in various geological processes occurring in Earth surface environments. In this paper we report the results of an experimental study of the interaction between anhydrite (100), (010), and (001) surfaces and Na₂CO₃ aqueous solutions under ambient conditions. Carbonation progress was monitored by glancing incidence X-ray diffraction (GIXRD) and scanning electron microscopy (SEM). We show that the reaction progresses through the dissolution of anhydrite and the simultaneous growth of calcite. The growth of calcite occurs oriented on the three anhydrite cleavage surfaces and its formation is accompanied by minor vaterite. The progress of the carbonation always occurs from the outer-ward to the inner-ward surfaces and its rate depends on the anhydrite surface considered, with the (001) surface being much more reactive than the (010) and (100) surfaces. The thickness of the formed carbonate layer grows linearly with time. The original external shape of the anhydrite crystals and their surface details (e.g., cleavage steps) are preserved during the carbonation reaction. Textural characteristics of the transformed regions, such as the gradation in the size of calcite crystals, from ~2 μm in the outer region to ~17 μm at the calcite-anhydrite interface, the local preservation of calcite crystalographic orientation with respect to anhydrite and the distribution of the microporosity mainly within the carbonate layer without development of any significant gap at the calcite-anhydrite interface. Finally, we compare these results on anhydrite carbonation with those on gypsum carbonation and can explain the differences on the basis of four parameters: (1) the molar volume change involved in the replacement process in each case, (2) the lack/existence of epitactic growth between parent and product phases, (3) the kinetics of dissolution of the different surfaces, and (4) the chemical composition (amount of structural water) of the parent phases
    • …
    corecore