2,302 research outputs found

    Immunomodulatory, Cytotoxic and Antileishmanial Activity of Setaria Megaphylla

    Get PDF
    Cytotoxic, antioxidative burst and antileishmanial properties of leaf extract and fractions of Setaria megaphylla were investigated to ascertain the folkloric claims of its potency in inflammatory diseases and infections. The leaf extract and fractions of Setaria megaphylla were investigated for anticancer activity against HeLa cells using SRB method and DNA interaction activity using gel electrophoresis. Antioxidative burst activity of the extract in whole blood, neutrophils and macrophages was also investigated using luminol/lucigenin-based chemiluminescence assay. The extract and fractions were similarly screened for antileishmanial activity against promastigotes of Leishmania major in vitro. The GCMS analysis of the most active fraction against HeLa cells was carried out. The leaf extract was found to exert significant anticancer activity with the hexane fraction exhibiting the most pronounced effect. The crude extract and the fractions did not interact with DNA when investigated using electrophoresis. The extract prominently inhibited oxidative burst activity in whole blood, isolated polymorphonuclear cells (PMNs) and mononuclear cells (MNCs) when two different phagocytosis activators (serum opsonizing zymosan-A and PMA) were used. The extract also exhibited moderate antileishmanial activity against promastigotes of Leishmania major in vitro. GCMS analysis of active fraction revealed pharmacologically active compounds. These results suggest that the leaf extract/fractions of S. megaphylla possesses cytotoxic, antioxidative burst and antileishmanial activities and these justify its use in ethnomedicine to treat inflammatory diseases and microbial infections and can be exploited in primary healthcare

    PLANT GROWTH POTENTIAL OF SALT TOLERANT ENDOPHYTE Pseudomonas Sihuiensis ISOLATED FROM CHICKPEA

    Get PDF
    Bacterial endosymbionts are well characterized for plant growth promotion. In this study, the root, nodules, and stem of the Cicer arietinum crop planted in a semi-arid zone were used as a source to isolate potential plant growth bacteria. The ability to grow under salt stress was determined, and the potential isolate was screened for plant growth promotion traits. The selected isolate was identified by the 16S rDNA method. Pot trials were conducted to know the ability of the isolate to promote plant growth in-vivo. Among various isolates obtained, a bacterial isolate obtained from root showed the ability to grow in the presence of 10 % Sodium fluoride (NaF). The isolate produced Indole Acetic acid in an amount of 72 mg per liter in production medium. The bacteria solubilized phosphate and produce exopolysaccharide (2.12 g per liter). The isolate was identified as Pseudomonas sihuiensis. The result of pot trials reveals that the endophyte promotes plant growth under stress conditions and may be used as a bio-fertilizer.   &nbsp

    17β-Hy­droxy-17α-(hy­droxy­meth­yl)estr-4-en-3-one

    Get PDF
    The title compound, C19H28O3, the fungal-transformed metabolite of the steroid methyl­oestrenol contains four fused rings A, B, C and D. Ring A adopts a half-chair and the trans-fused rings B and C adopt chair confirmations; the five-membered D ring is folded like an envelope. In the crystal, adjacent mol­ecules are linked by O—H⋯Ocarbon­yl and O—H⋯Ohy­droxy hydrogen bonds into a layer structure

    Synthesis, single crystal X-ray diffraction, Hirshfeld surface and biological activity of quinolone derivatives

    No full text
    Two new quinolone derivatives, 5-nitroquinolin-8-yl-3-bromobenzoate (1) and 5-nitroquinolin-8-yl-3-chlorobenzoate (2), were synthesized and their structures were elucidated using X-ray diffraction techniques. Both compounds crystallized in P21/n (monoclinic) space group having four independent molecules in asymmetric unit. The dihedral angle between benzene and planner quinoline rings in compounds 1 and 2 were found to be 117.7(2) and 117.4(2)ᵒ, respectively. No intermolecular hydrogen bonding was observed in compound 1. However, C-H···O intermolecular interaction was found to connect the molecules in crystal lattice of compound 2. Hirshfeld surfaces analysis was performed to evaluate the directions, and strength of interactions of molecules of compounds and 1 and 2 with neighbouring molecules, and the major contribution in the crystal packing was due to O-H (1, 24.6% and 2, 25.1%) interactions. The synthesized quinoline derivatives were found as potent anti-bacterial agents against E. coli reference (ATCC25922 and ATCC 35218) and multi-drug resistant strains (M2 and M3) with 91.42 to 94.72% inhibition. Both compounds 1 and 2 showed weak antileishmanial activity against L. Major promastigotes in vitro with IC50 values 73.2±3.1 and 72.2±2.3 mg/mL, respectively, and also found as cytotoxic in nature against 3T3 fibroblast cell line

    Biological activities of a new compound isolated from the aerial parts of Vitex agnus castus L.

    Get PDF
    A new compound trivially named vitexcarpan was isolated from the ethyl acetate fraction of Vitex agnus castus. The structure of compound was elucidated with the help of spectroscopic techniques: 13C NMR, 1H NMR, heteronuclear multiple bond correlation (HMBC), heteronuclear multiple quantum coherence (HMQC), nuclear overhauser effect spectroscopy (NOESY) and correlation spectroscopy (COSY). The isolated compound was screened for possible urease, chymotrypsin and anti-inflammatory activities. The results showed that the compound possess moderate inhibitory activity against urease (43.3 %) and chymotrypsin (39.8 %) enzymes. Vitexcarpan also showed moderate (48 %) in vitro antiinflammatory activity using activated human neutrophils.Keywords: Vitex agnus castus, vitexcarpan urease, chymotrypsin, anti-inflammator

    SOLID PHASE MICROBIAL FERMENTATION OF ANABOLIC STEROID, DIHYDROTESTOSTERONE WITH ASCOMYCETE FUNGUS FUSARIUM OXYSPORUM

    Get PDF
    Objective: Microbial catalysis is used in the commercial production of many bioactive steroids. Solid phase microbial fermentation of anabolic steroid, dihydrotestosterone (DHT, 1), was carried out with ascomycete fungal strain Fusarium oxysporum (NRRL-1392).Methods: Sabouraud-4% glucose-agar was used to cultivate the fungal cultures as solid phase medium. Substrate 1 was incubated with Fusarium oxysporum (NRRL-1392) for 8 days. Microbial transformed metabolites were purified by using column chromatographic technique. Results: Ascomycete fungal strain Fusarium oxysporum (NRRL-1392), transformed dihydrotestosterone (1) to four oxidative metabolites 2-5  using solid phase microbial transformation metod. During biotransformation process the hydroxy group was incorporated in inactivated methine carbon atoms at C-7 and C-11 positions. Their structures were elucidated by means of a homo and heteronuclear 2D NMR and by HREI-MS techniques as 17b-hydroxyandrosta-1, 4-dien-3-one 2, androsta-1, 4-diene-3, 17-dione 3, 7a, 17b-dihydroxyandrosta-1, 4-dien-3-one (4), and 11a-hydroxyandrosta-1, 4-diene-3, 17-dione 5. The relative stereochemistry of newly incorporated hydroxy groups were deduced by 2D NOESY experiment.Conclusion: In conclusion, microbial biocatalysis is an attractive alternative tool for the preparation of new bioactive steroids, which might be difficult to prepare by conventional chemical routes. Furthermore, microbial-catalyzed biotransformations can produce commercially valuable steroidal pharmaceuticals for the pharmaceutical industry.Â

    SOLID PHASE MICROBIAL REACTIONS OF SEX HORMONE, TRANS-ANDROSTERONE WITH FILAMENTOUS FUNGI

    Get PDF
    Objective: A microbial biotransformation study was performed on trans-androsterone (1) using solid phase medium. In the present context, trans-androsterone (1), a sex hormone was fermented with two filamentous fungi, Rhizopus stolonifer (black bread mold) and Fusarium lini.Methods: Sabouraud-4% glucose-agar were used to cultivate the fungal cultures as solid phase medium. Substrate 1 was incubated with R. stolonifer (ATCC 10404) and F. lini (NRRL 68751) for 8 days. Microbial transformed metabolites were purified by using column chromatographic technique. Results: The metabolism study of 1 revealed that various metabolites were detected when incubated with filamentous fungi. A total of 3 transformed products were obtained. The reactions occurred that exhibited diversity; including selective hydroxylation at C-6 and C-7 along with oxidation occurs at C-3 positions. Their structure and identified on the basis of extensive spectroscopic data (NMR, HREIMS, IR and UV) as 3b,7b-dihydroxy-5a-androstan-17-one 2 in a good yield (58%), 6b-hydroxy-5a-androstan-3,17-dione 3, and 3b,6b-dihydroxy-5a-androstan-17-one 4.Conclusion: Solid phase microbial transformation method can successfully be used for the development of new steroidal drugs. The modified steroidal molecules could favor when compared to their natural counterparts due to several medicinal advantages.Â

    On smoothing macroeconomic time series using HP and modified HP filter

    Get PDF
    In business cycle research, smoothing data is an essential step in that it can influence the extent to which model-generated moments stand up to their empirical counterparts. To demonstrate this idea, we compare the results of McDermott’s (1997) modified HP-filter with the conventional HP-filter on the properties of simulated and actual macroeconomic series. Our simulations suggest that the modified HP-filter proxies better the true cyclical series. This is true for temporally aggregated data as well. Furthermore, we find that although the autoregressive properties of the smoothed observed series are immune to smoothing procedures, the multivariate analysis is not. As a result, we recommend and hence provide series-, country- and frequency specific smoothing parameters
    corecore