40 research outputs found

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Influence of graphene content on properties of Cu matrix composites

    No full text
    Graphene reinforced copper composites were fabricated by a one-step chemical reduction and spark plasma sintering. The effect of graphene content on microstructure, mechanical properties and electrical conductivity properties of composites was investigated by XRD,SEM,Raman spectrometer, tensile testing machine, nanoindentation, eddy current conductivity meter, etc. The results show that graphene is uniformly distributed within copper matrix and can evidently improve the mechanical properties of copper matrix. Compared to pure copper, the yield strength, tensile strength and elastic modulus of composites is enhanced by 219.8%, 35.9% and 6.9% separately with addition of only 0.025% (mass fraction) graphene oxide. Besides, the electrical conductivity of composites remains 93.1%IACS. With the increase of graphene content, the yield strength, tensile strength and elastic modulus of composites decrease. The main reason is that graphene is not well wrapped by copper particles with the increase of graphene content and the bonding between the naked graphene and copper matrix is poor, which weakens the strengthening effect of load transfer

    Structural basis of bilin binding by the chlorophyll biosynthesis regulator GUN4

    No full text
    The chlorophyll biosynthesis regulator GENOMES UNCOUPLED 4 (GUN4) is conserved in nearly all oxygenic photosynthetic organisms. Recently, GUN4 has been found to be able to bind the linear tetrapyrroles (bilins) and stimulate the magnesium chelatase activity in the unicellular green alga Chlamydomonas reinhardtii. Here, we characterize GUN4 proteins from Arabidopsis thaliana and the cyanobacterium Synechocystis sp. PCC 6803 for their ability to bind bilins, and present the crystal structures of Synechocystis GUN4 in biliverdin-bound, phycocyanobilin-bound, and phytochromobilin-bound forms at the resolutions of 1.05, 1.10, and 1.70 angstrom, respectively. These linear molecules adopt a cyclic-helical conformation, and bind more tightly than planar porphyrins to the tetrapyrrole-binding pocket of GUN4. Based on structural comparison, we propose a working model of GUN4 in regulation of tetrapyrrole biosynthetic pathway, and address the role of the bilin-bound GUN4 in retrograde signaling

    Lactobacillus rhamnosus GG Affects Microbiota and Suppresses Autophagy in the Intestines of Pigs Challenged with Salmonella Infantis

    No full text
    Salmonella enterica serovar Infantis (S. Infantis) is a common source of foodborne gastroenteritis worldwide. Here, Lactobacillus rhamnosus GG (LGG) was administrated to weaned piglets for 1 week before S. Infantis challenge. S. Infantis caused decreased ileal mucosal microbiota diversity, a dramatic Lactobacillus amylovorus bloom, and decreased abundance of Arsenicicoccus, Janibacter, Kocuria, Nocardioides, Devosia, Paracoccus, Psychrobacter, and Weissella. The beneficial effect of LGG correlated with the moderate expansion of L. amylovorus, L. agilis, and several members of the phyla Proteobacteria, Firmicutes, and Bacteroidetes. S. Infantis translocation to the liver was decreased in the LGG-pretreated piglets. An in vitro model of LGG and S. Infantis co-incubation (involving the porcine intestinal epithelial cell line IPEC-J2) was established, and nalidixic acid was used to kill the extracellular S. Infantis. LGG suppressed the initial S. Infantis invasion in the IPEC-J2 cells and deceased the rate of cell death. LGG inhibited S. Infantis-induced autophagy and promoted epidermal growth factor receptor (EGFR) and Akt phosphorylation in both the ileum and IPEC-J2 cells. Our findings suggest that LGG inhibited S. Infantis-induced autophagy by promoting EGFR-mediated activation of the negative mediator Akt, which, in turn, suppressed intestinal epithelial cell death and thus restricted systemic S. Infantis infection. LGG can restore the gut microbiota balance and preserve the autophagy-related intestinal epithelial barrier, thereby controlling infections

    Highly Conjugated Three-Dimensional Covalent Organic Frameworks Based on Spirobifluorene for Perovskite Solar Cell Enhancement

    No full text
    Highly conjugated three-dimensional covalent organic frameworks (3D COFs) were constructed based on spirobifluorene cores linked via imine bonds (<b>SP-3D-COFs</b>) with novel interlacing conjugation systems. The crystalline structures were confirmed by powder X-ray diffraction and detailed structural simulation. A 6- or 7-fold interpenetration was formed depending on the structure of the linking units. The obtained <b>SP-3D-COFs</b> showed permanent porosity and high thermal stability. In application for solar cells, simple bulk doping of <b>SP-3D-COFs</b> to the perovskite solar cells (PSCs) substantially improved the average power conversion efficiency by 15.9% for <b>SP-3D-COF 1</b> and 18.0% for <b>SP-3D-COF 2</b> as compared to the reference undoped PSC, while offering excellent leakage prevention in the meantime. By aid of both experimental and computational studies, a possible photoresponsive perovskite–<b>SP-3D-COFs</b> interaction mechanism was proposed to explain the improvement of PSC performance after <b>SP-3D-COFs</b> doping
    corecore