35 research outputs found

    Shutdown Policies for MEMS-Based Storage Devices -- Analytical Models

    Get PDF
    MEMS-based storage devices should be energy ecient for deployment in mobile systems. Since MEMS-based storage devices have a moving me- dia sled, they should be shut down during periods of inactivity. However, shutdown costs energy, limiting the applicability of aggressive shutdown decisions. The media sled in MEMS-based storage devices is suspended by springs. We introduce a policy that exploits the spring structure to reduce the shut- down energy. As a result, the aggressiveness of the shutdown decisions can be increased, reducing the energy consumption. This report devises analytical models of the shutdown time and energy of this policy

    High incidence of medication documentation errors in a Swiss university hospital due to the handwritten prescription process

    Get PDF
    BACKGROUND: Medication errors have been reported to be a leading cause of death in hospitalized patients. In this study we focused on identifying and quantifying errors in the handwritten drug ordering and dispensing documentation processes which could possibly lead to adverse drug events. METHODS: We studied 1,934 ordered agents (165 consecutive patients) retrospectively for medication documentation errors. Errors were categorized into: Prescribing errors, transcription errors and administration documentation errors on the nurses' medication lists. The legibility of prescriptions was analyzed to explore its possible influence on the error rate in the documentation process. RESULTS: Documentation errors occurred in 65 of 1,934 prescribed agents (3.5%). The incidence of patient charts showing at least one error was 43%. Prescribing errors were found 39 times (37%), transcription errors 56 times (53%), and administration documentation errors 10 times (10%). The handwriting readability was rated as good in 2%, moderate in 42%, bad in 52%, and unreadable in 4%. CONCLUSIONS: This study revealed a high incidence of documentation errors in the traditional handwritten prescription process. Most errors occurred when prescriptions were transcribed into the patients' chart. The readability of the handwritten prescriptions was generally bad. Replacing the traditional handwritten documentation process with information technology could potentially improve the safety in the medication process

    Demonstrating Advantages of Neuromorphic Computation: A Pilot Study

    Get PDF
    Neuromorphic devices represent an attempt to mimic aspects of the brain's architecture and dynamics with the aim of replicating its hallmark functional capabilities in terms of computational power, robust learning and energy efficiency. We employ a single-chip prototype of the BrainScaleS 2 neuromorphic system to implement a proof-of-concept demonstration of reward-modulated spike-timing-dependent plasticity in a spiking network that learns to play the Pong video game by smooth pursuit. This system combines an electronic mixed-signal substrate for emulating neuron and synapse dynamics with an embedded digital processor for on-chip learning, which in this work also serves to simulate the virtual environment and learning agent. The analog emulation of neuronal membrane dynamics enables a 1000-fold acceleration with respect to biological real-time, with the entire chip operating on a power budget of 57mW. Compared to an equivalent simulation using state-of-the-art software, the on-chip emulation is at least one order of magnitude faster and three orders of magnitude more energy-efficient. We demonstrate how on-chip learning can mitigate the effects of fixed-pattern noise, which is unavoidable in analog substrates, while making use of temporal variability for action exploration. Learning compensates imperfections of the physical substrate, as manifested in neuronal parameter variability, by adapting synaptic weights to match respective excitability of individual neurons.Comment: Added measurements with noise in NEST simulation, add notice about journal publication. Frontiers in Neuromorphic Engineering (2019

    Neuromorphic Hardware In The Loop: Training a Deep Spiking Network on the BrainScaleS Wafer-Scale System

    Full text link
    Emulating spiking neural networks on analog neuromorphic hardware offers several advantages over simulating them on conventional computers, particularly in terms of speed and energy consumption. However, this usually comes at the cost of reduced control over the dynamics of the emulated networks. In this paper, we demonstrate how iterative training of a hardware-emulated network can compensate for anomalies induced by the analog substrate. We first convert a deep neural network trained in software to a spiking network on the BrainScaleS wafer-scale neuromorphic system, thereby enabling an acceleration factor of 10 000 compared to the biological time domain. This mapping is followed by the in-the-loop training, where in each training step, the network activity is first recorded in hardware and then used to compute the parameter updates in software via backpropagation. An essential finding is that the parameter updates do not have to be precise, but only need to approximately follow the correct gradient, which simplifies the computation of updates. Using this approach, after only several tens of iterations, the spiking network shows an accuracy close to the ideal software-emulated prototype. The presented techniques show that deep spiking networks emulated on analog neuromorphic devices can attain good computational performance despite the inherent variations of the analog substrate.Comment: 8 pages, 10 figures, submitted to IJCNN 201

    Pattern representation and recognition with accelerated analog neuromorphic systems

    Full text link
    Despite being originally inspired by the central nervous system, artificial neural networks have diverged from their biological archetypes as they have been remodeled to fit particular tasks. In this paper, we review several possibilites to reverse map these architectures to biologically more realistic spiking networks with the aim of emulating them on fast, low-power neuromorphic hardware. Since many of these devices employ analog components, which cannot be perfectly controlled, finding ways to compensate for the resulting effects represents a key challenge. Here, we discuss three different strategies to address this problem: the addition of auxiliary network components for stabilizing activity, the utilization of inherently robust architectures and a training method for hardware-emulated networks that functions without perfect knowledge of the system's dynamics and parameters. For all three scenarios, we corroborate our theoretical considerations with experimental results on accelerated analog neuromorphic platforms.Comment: accepted at ISCAS 201

    Accelerated physical emulation of Bayesian inference in spiking neural networks

    Get PDF
    The massively parallel nature of biological information processing plays an important role for its superiority to human-engineered computing devices. In particular, it may hold the key to overcoming the von Neumann bottleneck that limits contemporary computer architectures. Physical-model neuromorphic devices seek to replicate not only this inherent parallelism, but also aspects of its microscopic dynamics in analog circuits emulating neurons and synapses. However, these machines require network models that are not only adept at solving particular tasks, but that can also cope with the inherent imperfections of analog substrates. We present a spiking network model that performs Bayesian inference through sampling on the BrainScaleS neuromorphic platform, where we use it for generative and discriminative computations on visual data. By illustrating its functionality on this platform, we implicitly demonstrate its robustness to various substrate-specific distortive effects, as well as its accelerated capability for computation. These results showcase the advantages of brain-inspired physical computation and provide important building blocks for large-scale neuromorphic applications.Comment: This preprint has been published 2019 November 14. Please cite as: Kungl A. F. et al. (2019) Accelerated Physical Emulation of Bayesian Inference in Spiking Neural Networks. Front. Neurosci. 13:1201. doi: 10.3389/fnins.2019.0120

    Versatile emulation of spiking neural networks on an accelerated neuromorphic substrate

    Full text link
    We present first experimental results on the novel BrainScaleS-2 neuromorphic architecture based on an analog neuro-synaptic core and augmented by embedded microprocessors for complex plasticity and experiment control. The high acceleration factor of 1000 compared to biological dynamics enables the execution of computationally expensive tasks, by allowing the fast emulation of long-duration experiments or rapid iteration over many consecutive trials. The flexibility of our architecture is demonstrated in a suite of five distinct experiments, which emphasize different aspects of the BrainScaleS-2 system

    Harnessing the biodiversity value of Central and Eastern European farmland

    Get PDF
    A large proportion of European biodiversity today depends on habitat provided by low-intensity farming practices, yet this resource is declining as European agriculture intensifies. Within the European Union, particularly the central and eastern new member states have retained relatively large areas of species-rich farmland, but despite increased investment in nature conservation here in recent years, farmland biodiversity trends appear to be worsening. Although the high biodiversity value of Central and Eastern European farmland has long been reported, the amount of research in the international literature focused on farmland biodiversity in this region remains comparatively tiny, and measures within the EU Common Agricultural Policy are relatively poorly adapted to support it. In this opinion study, we argue that, 10years after the accession of the first eastern EU new member states, the continued under-representation of the low-intensity farmland in Central and Eastern Europe in the international literature and EU policy is impeding the development of sound, evidence-based conservation interventions. The biodiversity benefits for Europe of existing low-intensity farmland, particularly in the central and eastern states, should be harnessed before they are lost. Instead of waiting for species-rich farmland to further decline, targeted research and monitoring to create locally appropriate conservation strategies for these habitats is needed now.Peer reviewe
    corecore