3,172 research outputs found

    The Small Observed Baryon Asymmetry from a Large Lepton Asymmetry

    Get PDF
    Primordial Big-Bang Nucleosynthesis (BBN) tightly constrains the existence of any additional relativistic degrees of freedom at that epoch. However a large asymmetry in electron neutrino number shifts the chemical equilibrium between the neutron and proton at neutron freeze-out and allows such additional particle species. Moreover, the BBN itself may also prefer such an asymmetry to reconcile predicted element abundances and observations. However, such a large asymmetry appears to be in conflict with the observed small baryon asymmetry if they are in sphaleron mediated equilibrium. In this paper we point out the surprising fact that in the Standard Model, if the asymmetries in the electron number and the muon number are equal (and opposite) and of the size required to reconcile BBN theory with observations, a baryon asymmetry of the Universe of the correct magnitude and sign is automatically generated within a factor of two. This small remaining discrepancy is naturally remedied in the supersymmetric Standard Model.Comment: 14 page

    Impurity effects at finite temperature in the two-dimensional S=1/2 Heisenberg antiferromagnet

    Full text link
    We discuss effects of various impurities on the magnetic susceptibility and the specific heat of the quantum S=1/2 Heisenberg antiferromagnet on a two-dimensional square lattice. For impurities with spin S_i > 0 (here S_i=1/2 in the case of a vacancy or an added spin, and S_i=1 for a spin coupled ferromagnetically to its neighbors), our quantum Monte Carlo simulations confirm a classical-like Curie susceptibility contribution S_i^2/4T, which originates from an alignment of the impurity spin with the local N\'eel order. In addition, we find a logarithmically divergent contribution, which we attribute to fluctuations transverse to the local N\'eel vector. We also study frustrated and nonfrustrated bond impurities with S_i=0. For a simple intuitive picture of the impurity problem, we discuss an effective few-spin model that can distinguish between the different impurities and reproduces the leading-order simulation data over a wide temperature range.Comment: 15 pages, 14 figures, submitted to PRB. v2, published version with cosmetic change

    Quark mass uncertainties revive KSVZ axion dark matter

    Full text link
    The Kaplan-Manohar ambiguity in light quark masses allows for a larger uncertainty in the ratio of up to down quark masses than naive estimates from the chiral Lagrangian would indicate. We show that it allows for a relaxation of experimental bounds on the QCD axion, specifically KSVZ axions in the 23μ2-3 \mueV mass range composing 100% of the galactic dark matter halo can evade the experimental limits placed by the ADMX collaboration.Comment: 9 pages, 5 figure

    Randall-Sundrum graviton spin determination using azimuthal angular dependence

    Full text link
    Quantum interference of helicity amplitudes provides a powerful tool for measuring the spins of new particles. By looking at the azimuthal angular dependence of the differential cross-section in the production followed by decay of a new particle species one can determine its spin by looking at the various cosine modes. The heavy spin-2 Kaluza-Klein (KK) graviton provides a unique signature with a cos(4ϕ)\cos{(4 \phi)} mode. We study the feasibility of this approach to measuring the spin of the KK graviton in the Randall-Sundrum Model at the LHC.Comment: 7 pages, 6 figure

    A New Constraint for the Coupling of Axion-like particles to Matter via Ultra-Cold Neutron Gravitational Experiments

    Get PDF
    We present a new constraint for the axion monopole-dipole coupling in the range of 1 micrometer to a few millimeters, previously unavailable for experimental study. The constraint was obtained using our recent results on the observation of neutron quantum states in the Earth's gravitational field. We exploit the ultimate sensitivity of ultra-cold neutrons (UCN) in the lowest gravitational states above a material surface to any additional interaction between the UCN and the matter, if the characteristic interaction range is within the mentioned domain. In particular, we find that the upper limit for the axion monopole-dipole coupling constant is (g_p g_s)/(\hbar c)<2 x 10^{-15} for the axion mass in the ``promising'' axion mass region of ~1 meV.Comment: 5 pages 3 figure

    Felling by a Five-Legged Walking Machine

    Get PDF
    A 1/11 scale model of a walking machine with five legs was constructed, and its operation as a feller-buncher investigated. As slopes steepen, the machine when positioned straight up the slope becomes more efficient than when positioned parallel to the contour lines, because the downward operational range of the machine decreases with increased slopes. In the experiments, the ground pressure of the legs on the end opposite the boom was nearly zero when the boom holding felled trees was positioned at the side of the body and extended farthest from the body. However, further investigations (including such factors as ground disturbance, the operation of the machine, the degrees and the length of slope, and the fuel consumption) of felling operations are needed. Feller-bunching tends to be less efficient as tree density increases assuming that felling time per tree remains constant as tree diameter changes. To obtain greater productivity with the machine as a feller-buncher, it is essential to achieve faster walking-time and shorter felling-time per tree
    corecore