53 research outputs found

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    The composition and geochemical significance of organic matters in surface sediments from the Southwest Sub-basin of the South China Sea

    No full text
    Information about ocean evolution and material-energy exchange between the ocean and surrounding continents can be preserved in marine sediments. The Southwest Sub-basin, located among the Xisha Islands, the Zhongsha Islands, and the Nansha Islands, is an ideal tectonic unit to analyze the sedimentary environments of the South China Sea. In this paper, the distribution patterns of lipid biomarkers and their compound-specific stable carbon isotopes in surface sediments from the Southwest Sub-basin of the South China Sea were analyzed. Lipid biomarkers are composed of different proportions of aliphatic hydrocarbons, carboxylic acids, alcohols and series of sterols, indicating that the organic matter of the Southwest Sub-basin was derived from marine bacteria, algae and terrestrial higher plants. The average concentration of total organic carbon (TOC) in the study samples was 0.5 +/- 0.16%. TOC, total n-alkanes, and total carboxylic acids (TFA) decreased gradually from the margins to the center of the sub-basin, whereas the content of total n-alkanols increased. The spatial distribution trends resulted from varying water depths and the contribution of terrestrial organic matter. The concentration of TFA and the TFA/TOC revealed that the accumulation of organic matter in this area was generally low. The strong correlation between TOC and TFA of surface sediments in the study area may be related to a balance between the ocean production and ocean deposition rates

    Enhancing electrocatalytic CO2 reduction in solid oxide electrolysis cell with Ce0.9Mn0.1O2-delta nanoparticles-modified LSCM-GDC cathode

    No full text
    (La,Sr)(Cr,Mn)O-3 perovskite (LSCM) is one of the most promising cathode materials for solid oxide electrolysis cell (SOEC) at high temperature, but suffers from poor electrocatalytic activity towards CO2 reduction. Here we report that a modified LSCM based composite cathode fabricated via infiltrating Ce0.9Mn0.1O2-delta (CMO) nanoparticles onto (La0.75Sr0.25)(0.95)(CrasMn(0.5))O3-delta-Ce0.8Gd0.2O1.9 (LSCM-GDC) composite materials, shows greatly improved electrocatalytic activity and stability towards CO2 reduction compared with the unmodified LSCM cathode. Physicochemical characterizations and electrochemical impedance spectroscopy analysis of electrocatalytic CO2 reduction in SOEC show that CO2 adsorption and the following carbonate intermediate dissociation processes on the CMO nanoparticles-modified LSCM-GDC cathode are significantly improved, which is attributed to the increased active three phase boundaries and surface oxygen vacancies by the infiltration of CMO nanoparticles on the LSCM-GDC cathode. (C) 2018 Elsevier Inc. All rights reserved

    (La0.75Sr0.25)(0.95)(Cr0.5Mn0.5)O3-delta-Ce0.8Gd0.2O1.9 scaffolded composite cathode for high temperature CO2 electroreduction in solid oxide electrolysis cell

    No full text
    As a promising cathode material for CO2 electroreduction in solid oxide electrolysis cell, (La,Sr) (Cr,Mn)O-3 perovskite usually suffers from insufficient electrocatalytic activity and poor stability. We report here that a (La,Sr) (Cr,Mn)O-3-based scaffolded composite cathode fabricated through co-loading (La0.75Sr0.25)(0.95)(Cr0.5Mn0.5)O3-delta-Ce0.8Gd0.2O1.9 composite within the porous yttria-stabilized zirconia scaffold, enables the electrolyte-supported solid oxide electrolysis cell to exhibit high electrocatalytic activity and stability towards CO2 electroreduction in comparison with the conventional (La0.25Sr0.25)(0.95)(Cr0.5Mn0.5)O3-delta-Ce0.8Gd0.2O1.9 cathode. This scaffolded architecture design provides micro-sized pores for CO2 transportation, well-connected yttria-stabilized zirconia network for oxygen ion conduction, (La0.25Sr0.25)(0.95)(Cr0.5Mn0.5)O3-delta-Ce0.8Gd0.2O1.9 composite catalyst layer for creating highly active (La0.75Sr0.25)(0.95)(Cr0.5Mn0.5)O3-delta-Ce0.8Gd0.2O1.9-gas three-phase boundaries and increasing surface oxygen vacancies concentration. Furthermore, the intimate interaction between (La0.25Sr0.25)(0.95)(Cr0.5Mn0.5)O3-delta and Ce0.8Gd0.2O1.9 nanoparticles in the composites effectively suppresses particles aggregation. The (La0.25Sr0.25)(0.95)(Cr0.5Mn0.5)O3-delta perovskite-Ce0.8Gd0.2O1.9 fluorite scaffolded composite cathode offers a promising approach to prepare highly active and stable (La,Sr) (Cr,Mn)O-3 based cathode for CO2 electroreduction in high temperature solid oxide electrolysis cell

    Multiplex genome editing targeting soybean with ultra-low anti-nutritive oligosaccharides

    No full text
    Soybean is the primary source of plant protein for humans. Owing to the indigestibility of the raffinose family of oligosaccharides (RFO), raffinose and stachyose are considered anti-nutritive factors in soybean seeds. Low-RFO soybean cultivars are generated by mutagenesis of RFO biosynthesis genes, but the carbohydrate profiles invite further modification to lower RFOs. This study employed a pooled multiplex genome editing approach to target four seed-specifically expressed genes mediating RFO biosynthesis, encoding three raffinose synthases (RS2, RS3, and RS4) and one stachyose synthase. In T1 progeny, rs2/rs3 and rs4/sts homozygous double mutants and a rs2/rs3/rs4/sts quadruple mutant (rfo-4m) were characterized. The rs2/rs3 mutant showed reduced raffinose and stachyose contents, but the rs4/sts mutant showed only reduced stachyose in seeds. The RFO contents in the rfo-4m mutant were almost eliminated. Metabolomic analysis showed that the mutation of four RFO biosynthesis genes led to a shift of metabolic profile in the seeds, including the accumulation of several oligosaccharides-related metabolites. These mutants could contribute to precision breeding of soybean cultivars for soy food production

    Phosphorylation of a WRKY Transcription Factor by MAPKs Is Required for Pollen Development and Function in <i>Arabidopsis</i>

    No full text
    <div><p>Plant male gametogenesis involves complex and dynamic changes in gene expression. At present, little is known about the transcription factors involved in this process and how their activities are regulated. Here, we show that a pollen-specific transcription factor, WRKY34, and its close homolog, WRKY2, are required for male gametogenesis in <i>Arabidopsis thaliana</i>. When overexpressed using <i>LAT52</i>, a strong pollen-specific promoter, epitope-tagged WRKY34 is temporally phosphorylated by MPK3 and MPK6, two mitogen-activated protein kinases (MAPKs, or MPKs), at early stages in pollen development. During pollen maturation, WRKY34 is dephosphorylated and degraded. Native promoter-driven WRKY34-YFP fusion also follows the same expression pattern at the protein level. WRKY34 functions redundantly with WRKY2 in pollen development, germination, and pollen tube growth. Loss of MPK3/MPK6 phosphorylation sites in WRKY34 compromises the function of WRKY34 <i>in vivo</i>. Epistasis interaction analysis confirmed that <i>MPK6</i> belongs to the same genetic pathway of <i>WRKY34</i> and <i>WRKY2</i>. Our study demonstrates the importance of temporal post-translational regulation of WRKY transcription factors in the control of developmental phase transitions in plants.</p></div
    corecore