18 research outputs found

    Pretreatment cognitive and neural differences between sapropterin dihydrochloride responders and non-responders with phenylketonuria

    Get PDF
    Sapropterin dihydrochloride (BH4) reduces phenylalanine (Phe) levels and improves white matter integrity in a subset of individuals with phenylketonuria (PKU) known as “responders.” Although prior research has identified biochemical and genotypic differences between BH4 responders and non-responders, cognitive and neural differences remain largely unexplored. To this end, we compared intelligence and white matter integrity prior to treatment with BH4 in 13 subsequent BH4 responders with PKU, 16 subsequent BH4 non-responders with PKU, and 12 healthy controls. Results indicated poorer intelligence and white matter integrity in non-responders compared to responders prior to treatment. In addition, poorer white matter integrity was associated with greater variability in Phe across the lifetime in non-responders but not in responders. These results underscore the importance of considering PKU as a multi-faceted, multi-dimensional disorder and point to the need for additional research to delineate characteristics that predict response to treatment with BH4

    BNT162b2 and ChAdOx1 nCoV-19 vaccinations, incidence of SARS-CoV-2 infections and COVID-19 hospitalisations in Scotland in the Delta era

    Get PDF
    EAVE II is supported by the Medical Research Council (MR/R008345/1) with the support of BREATHE – The Health Data Research Hub for Respiratory Health, which is funded through the UK Research and Innovation Industrial Strategy Challenge Fund [MC_PC_19004] and delivered through Health Data Research UK. Additional support has been provided through Public Health Scotland and Scottish Government DG Health and Social Care, the Data and Connectivity National Core Study, led by Health Data Research UK in partnership with the Office for National Statistics and funded by UK Research and Innovation (grant ref MC_PC_20058) and the Lifelong Health and Well-being study as part of the National Core Studies (MC_PC_20030).Peer reviewedPublisher PD

    BNT162b2 COVID-19 vaccination uptake, safety, effectiveness and waning in children and young people aged 12–17 years in Scotland

    Get PDF
    This study is part of the EAVE II project. EAVE II is funded by the MRC (MC_PC_19075) with the support of BREATHE—The Health Data Research Hub for Respiratory Health (MC_PC_19004), which is funded through the UK Research and Innovation Industrial Strategy Challenge Fund and delivered through the Health Data Research UK. This research is part of the Data and Connectivity National Core Study, led by Health Data Research UK in partnership with the Office for National Statistics and funded by UK Research and Innovation (grant ref MC_PC_20058). This work was also supported by The Alan Turing Institute via ‘Towards Turing 2.0’ EPSRC Grant Funding. Additional support has been provided through Public Health Scotland, the Scottish Government Director-General Health and Social Care and the University of Edinburgh. The original EAVE project was funded by the National Institute for Health Research (NIHR) Health Technology Assessment programme (11/46/23). The views expressed are those of the authors and not necessarily those of the NIHR, the Department of Health and Social Care, or the UK government. We thank Dave Kelly from Albasoft (Inverness, UK) for his support with making primary care data available, and Wendy Inglis-Humphrey, Vicky Hammersley, and Laura Brook (University of Edinburgh, Edinburgh, UK) for their support with project management and administration.Peer reviewedPublisher PD

    COVID-19 hospital admissions and deaths after BNT162b2 and ChAdOx1 nCoV-19 vaccinations in 2·57 million people in Scotland (EAVE II):a prospective cohort study

    Get PDF
    EAVE II is funded by the Medical Research Council (MR/R008345/1) with the support of BREATHE—The Health Data Research Hub for Respiratory Health [MC_PC_19004], which is funded through the UK Research and Innovation Industrial Strategy Challenge Fund and delivered through Health Data Research UK. UA, CM, AA-L, and AFF acknowledge funding from Chief Scientist Office Rapid Research in COVID-19 programme (COV/SAN/20/06) and Health Data Research UK (measuring and understanding multimorbidity using routine data in the UK—HDR-9006; CFC0110). SVK acknowledges funding from a NHS Research Scotland Senior Clinical Fellowship (SCAF/15/02), the Medical Research Council (MC_UU_00022/2), and the Scottish Government's Chief Scientist Office (SPHSU17). SJS is funded by a Wellcome Trust Clinical Career Development Fellowship (209560/Z/17/Z).Background  The UK COVID-19 vaccination programme has prioritised vaccination of those at the highest risk of COVID-19 mortality and hospitalisation. The programme was rolled out in Scotland during winter 2020–21, when SARS-CoV-2 infection rates were at their highest since the pandemic started, despite social distancing measures being in place. We aimed to estimate the frequency of COVID-19 hospitalisation or death in people who received at least one vaccine dose and characterise these individuals. Methods  We conducted a prospective cohort study using the Early Pandemic Evaluation and Enhanced Surveillance of COVID-19 (EAVE II) national surveillance platform, which contained linked vaccination, primary care, RT-PCR testing, hospitalisation, and mortality records for 5·4 million people (around 99% of the population) in Scotland. Individuals were followed up from receiving their first dose of the BNT162b2 (Pfizer–BioNTech) or ChAdOx1 nCoV-19 (Oxford–AstraZeneca) COVID-19 vaccines until admission to hospital for COVID-19, death, or the end of the study period on April 18, 2021. We used a time-dependent Poisson regression model to estimate rate ratios (RRs) for demographic and clinical factors associated with COVID-19 hospitalisation or death 14 days or more after the first vaccine dose, stratified by vaccine type. Findings Between Dec 8, 2020, and April 18, 2021, 2 572 008 individuals received their first dose of vaccine—841 090 (32·7%) received BNT162b2 and 1 730 918 (67·3%) received ChAdOx1. 1196 (<0·1%) individuals were admitted to hospital or died due to COVID-19 illness (883 hospitalised, of whom 228 died, and 313 who died due to COVID-19 without hospitalisation) 14 days or more after their first vaccine dose. These severe COVID-19 outcomes were associated with older age (≥80 years vs 18–64 years adjusted RR 4·75, 95% CI 3·85–5·87), comorbidities (five or more risk groups vs less than five risk groups 4·24, 3·34–5·39), hospitalisation in the previous 4 weeks (3·00, 2·47–3·65), high-risk occupations (ten or more previous COVID-19 tests vs less than ten previous COVID-19 tests 2·14, 1·62–2·81), care home residence (1·63, 1·32–2·02), socioeconomic deprivation (most deprived quintile vs least deprived quintile 1·57, 1·30–1·90), being male (1·27, 1·13–1·43), and being an ex-smoker (ex-smoker vs non-smoker 1·18, 1·01–1·38). A history of COVID-19 before vaccination was protective (0·40, 0·29–0·54). Interpretation COVID-19 hospitalisations and deaths were uncommon 14 days or more after the first vaccine dose in this national analysis in the context of a high background incidence of SARS-CoV-2 infection and with extensive social distancing measures in place. Sociodemographic and clinical features known to increase the risk of severe disease in unvaccinated populations were also associated with severe outcomes in people receiving their first dose of vaccine and could help inform case management and future vaccine policy formulation.Publisher PDFPeer reviewe

    The future of zoonotic risk prediction

    Get PDF
    In the light of the urgency raised by the COVID-19 pandemic, global investment in wildlife virology is likely to increase, and new surveillance programmes will identify hundreds of novel viruses that might someday pose a threat to humans. To support the extensive task of laboratory characterization, scientists may increasingly rely on data-driven rubrics or machine learning models that learn from known zoonoses to identify which animal pathogens could someday pose a threat to global health. We synthesize the findings of an interdisciplinary workshop on zoonotic risk technologies to answer the following questions. What are the prerequisites, in terms of open data, equity and interdisciplinary collaboration, to the development and application of those tools? What effect could the technology have on global health? Who would control that technology, who would have access to it and who would benefit from it? Would it improve pandemic prevention? Could it create new challenges? This article is part of the theme issue 'Infectious disease macroecology: parasite diversity and dynamics across the globe'.Peer reviewe

    Vaccine effectiveness of two-dose BNT162b2 against symptomatic and severe COVID-19 among adolescents in Brazil and Scotland over time: a test-negative case-control study.

    Get PDF
    BACKGROUND: Little is known about vaccine effectiveness over time among adolescents, especially against the SARS-CoV-2 omicron (B.1.1.529) variant. This study assessed the associations between time since two-dose vaccination with BNT162b2 and the occurrence of symptomatic SARS-CoV-2 infection and severe COVID-19 among adolescents in Brazil and Scotland. METHODS: We did test-negative, case-control studies in adolescents aged 12-17 years with COVID-19-related symptoms in Brazil and Scotland. We linked records of SARS-CoV-2 RT-PCR and antigen tests to national vaccination and clinical records. We excluded tests from individuals who did not have symptoms, were vaccinated before the start of the national vaccination programme, received vaccines other than BNT162b2 or a SARS-CoV-2 booster dose of any kind, or had an interval between their first and second dose of fewer than 21 days. Additionally, we excluded negative SARS-CoV-2 tests recorded within 14 days of a previous negative test, negative tests recorded within 7 days after a positive test, any test done within 90 days after a positive test, and tests with missing sex and location information. Cases (SARS-CoV-2 test-positive adolescents) and controls (test-negative adolescents) were drawn from a sample of individuals in whom tests were collected within 10 days of symptom onset. We estimated the adjusted odds ratio and vaccine effectiveness against symptomatic COVID-19 for both countries and against severe COVID-19 (hospitalisation or death) for Brazil across fortnightly periods. FINDINGS: We analysed 503 776 tests from 2 948 538 adolescents in Brazil between Sept 2, 2021, and April 19, 2022, and 127 168 tests from 404 673 adolescents in Scotland between Aug 6, 2021, and April 19, 2022. Vaccine effectiveness peaked at 14-27 days after the second dose in both countries during both waves, and was significantly lower against symptomatic infection during the omicron-dominant period in Brazil (64·7% [95% CI 63·0-66·3]) and in Scotland (82·6% [80·6-84·5]), than it was in the delta-dominant period (80·7% [95% CI 77·8-83·3] in Brazil and 92·8% [85·7-96·4] in Scotland). Vaccine efficacy started to decline from 27 days after the second dose for both countries, reducing to 5·9% (95% CI 2·2-9·4) in Brazil and 50·6% (42·7-57·4) in Scotland at 98 days or more during the omicron-dominant period. In Brazil, protection against severe disease remained above 80% from 28 days after the second dose and was 82·7% (95% CI 68·8-90·4) at 98 days or more after receiving the second dose. INTERPRETATION: We found waning vaccine protection of BNT162b2 against symptomatic COVID-19 infection among adolescents in Brazil and Scotland from 27 days after the second dose. However, protection against severe COVID-19 outcomes remained high at 98 days or more after the second dose in the omicron-dominant period. Booster doses for adolescents need to be considered. FUNDING: UK Research and Innovation (Medical Research Council), Scottish Government, Health Data Research UK BREATHE Hub, Fiocruz, Fazer o Bem Faz Bem programme, Brazilian National Research Council, and Wellcome Trust. TRANSLATION: For the Portuguese translation of the abstract see Supplementary Materials section

    The future of zoonotic risk prediction

    Get PDF
    In the light of the urgency raised by the COVID-19 pandemic, global investment in wildlife virology is likely to increase, and new surveillance programmes will identify hundreds of novel viruses that might someday pose a threat to humans. To support the extensive task of laboratory characterization, scientists may increasingly rely on data-driven rubrics or machine learning models that learn from known zoonoses to identify which animal pathogens could someday pose a threat to global health. We synthesize the findings of an interdisciplinary workshop on zoonotic risk technologies to answer the following questions. What are the prerequisites, in terms of open data, equity and interdisciplinary collaboration, to the development and application of those tools? What effect could the technology have on global health? Who would control that technology, who would have access to it and who would benefit from it? Would it improve pandemic prevention? Could it create new challenges? This article is part of the theme issue ‘Infectious disease macroecology: parasite diversity and dynamics across the globe’.NSF BII 2021909; the University of Toronto EEB Fellowship; the Wellcome Trust; the National Institute of Allergy and Infectious Diseases of the National Institutes of Health and the Defense Threat Reduction Agency.http://rstb.royalsocietypublishing.orgam2022Medical Virolog
    corecore