900 research outputs found

    Orientation to Happiness as a Predictor of University Students’ Engagement

    Get PDF
    There is empirical evidence for a close link between positive personal components and students' engagement in academic activities. Personal well-being is a construct that can be studied from a variety of angles. Recent studies point to the relevance of orientation to happiness examining three types of well-being. The main objective of this study is to test the relationship that orientation to happiness has with university students' engagement at a public institution in northern Mexico. A stratified probabilistic sample of 266 students was used. The internal consistency of the scales was analyzed using the SPSS package and a model of structural equations in the EQS program. Results indicate is a direct and significant relationship between the orientation to happiness and the students' engagement. This supports the importance of promoting positive factors in students to improve their academic and personal development

    Learning contract, co-operative and flipped learning as useful tools for studying metabolism

    Get PDF
    Es el Abstract de una comunicación a un congreso internacional sobre educaciónUndergraduate students in Biology identify Metabolic Biochemistry as a particularly difficult subject. This is due to the fact that students need to interconnect properly all the contents of its syllabus throughout their study of the subject in order to get a global insight of the complex regulatory features controlling metabolic pathways within the metabolic network under different physiologic and pathologic conditions, as well as metabolism as a whole. Due to these objective difficulties, a high percentage of our students face the study of this subject as a very hard task beyond their forces and capacities. This perception leads to high rates of premature dropout. In previous years, less than 40% of all the registered students attended the examinations of Metabolic Biochemistry (a subject in the second year of the Degree of Biology at our University). Even worse, less than 25% of our students passed the exams. From the academic year 2015/16 on, we are developing innovative teaching projects (PIE15-163 and PIE17-145, funded by University of Malaga) aimed to increase our student loyalty to the subject (and hence to increase their attendance to exams) and to help them to learn more effectively metabolism and its regulation. These innovative teaching projects are based on the use of several powerful tools: a learning contract and problem-based learning within the framework of group tasks promoting an actual collaborative learning in a flipped classroom. The present communication will show the implementation of the PIE15-163 and PIE17-145 projects and some results obtained from them.This work was supported by Malaga University funds granted to the educational innovation project PIE17-145. The attendance to the END2018 International Conference on Education and New Developments (June 2018, Budapest, Hungary) has received a grant from "I Plan Propio Integral de Docencia. Universidad de Málaga"]

    Identification of Foulants on Polyethersulfone Membranes Used to Remove Colloids and Dissolved Matter from Paper Mill Treated Effluent

    Full text link
    [EN] In this study, membrane fouling caused by paperboard mill treated effluent (PMTE) was investigated based on a dead-end ultrafiltration (UF) pilot-scale study. The membranes employed were commercial hydrophobic UF membranes made of polyethersulfone (PES) with a molecular weight cut-off of 10 kDa, 50 kDa, and 100 kDa. Membrane fouling mechanism during dead-end filtration, chemical analysis, field emission scanning electron microscopy (FESEM), energy-dispersive spectrophotometry (EDS), attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy and 3D fluorescence excitation emission matrix (3DEEM) analysis were applied to understand which fraction of the dissolved and colloidal substances (DCS) caused the membrane fouling. The results indicated that the phenomenon controlling fouling mechanism tended to be cake layer formation (R-2 >= 0.98) for all membranes tested. The 3DEEM results indicate that the majority of the organic foulants with fluorescence characteristics on the membrane were colloidal proteins (protein-like substances I+II) and macromolecular proteins (soluble microbial products, SMP-like substances). In addition, polysaccharide (cellulosic species), fatty and resin acid substances were identified on the fouled membrane by the ATR-FTIR analysis and play an important role in membrane fouling. In addition, the FESEM and EDS analyses indicate that the presence of inorganic foulants on the membrane surfaces, such as metal ions and especially Ca2+, can accelerate membrane fouling, whereas Mg and Si are linked to reversible fouling.Sousa, MRS.; Lora-García, J.; López Pérez, MF.; Heran, M. (2020). Identification of Foulants on Polyethersulfone Membranes Used to Remove Colloids and Dissolved Matter from Paper Mill Treated Effluent. Water. 12(2):1-27. https://doi.org/10.3390/w12020365S127122Key Statistics Report 2017|CEPI—CONFEDERATION OF EUROPEAN PAPER INDUSTRIEShttp://www.cepi.org/keystatistics2017Sevimli, M. F. (2005). Post-Treatment of Pulp and Paper Industry Wastewater by Advanced Oxidation Processes. Ozone: Science & Engineering, 27(1), 37-43. doi:10.1080/01919510590908968Zwain, H. M., Hassan, S. R., Zaman, N. Q., Aziz, H. A., & Dahlan, I. (2013). The start-up performance of modified anaerobic baffled reactor (MABR) for the treatment of recycled paper mill wastewater. Journal of Environmental Chemical Engineering, 1(1-2), 61-64. doi:10.1016/j.jece.2013.03.007Ordóñez, R., Hermosilla, D., San Pío, I., & Blanco, A. (2010). Replacement of fresh water use by final effluent recovery in a highly optimized 100% recovered paper mill. Water Science and Technology, 62(7), 1694-1703. doi:10.2166/wst.2010.933Rudolph, G., Schagerlöf, H., Morkeberg Krogh, K., Jönsson, A.-S., & Lipnizki, F. (2018). Investigations of Alkaline and Enzymatic Membrane Cleaning of Ultrafiltration Membranes Fouled by Thermomechanical Pulping Process Water. Membranes, 8(4), 91. doi:10.3390/membranes8040091Bayr, S., & Rintala, J. (2012). Thermophilic anaerobic digestion of pulp and paper mill primary sludge and co-digestion of primary and secondary sludge. Water Research, 46(15), 4713-4720. doi:10.1016/j.watres.2012.06.033Chen, C., Mao, S., Wang, J., Bao, J., Xu, H., Su, W., & Dai, H. (2015). Application of Ultrafiltration in a Paper Mill: Process Water Reuse and Membrane Fouling Analysis. BioResources, 10(2). doi:10.15376/biores.10.2.2376-2391Puro, L., Kallioinen, M., Mänttäri, M., Natarajan, G., C. Cameron, D., & Nyström, M. (2010). Performance of RC and PES ultrafiltration membranes in filtration of pulp mill process waters. Desalination, 264(3), 249-255. doi:10.1016/j.desal.2010.06.034Zaidi, A., Buisson, H., Sourirajan, S., & Wood, H. (1992). Ultra- and Nano-Filtration in Advanced Effluent Treatment Schemes for Pollution Control in the Pulp and Paper Industry. Water Science and Technology, 25(10), 263-276. doi:10.2166/wst.1992.0254Karthik, M., Dhodapkar, R., Manekar, P., Aswale, P., & Nandy, T. (2011). Closing water loop in a paper mill section for water conservation and reuse. Desalination, 281, 172-178. doi:10.1016/j.desal.2011.07.055Sousa, M. R. S., Lora-Garcia, J., & López-Pérez, M.-F. (2018). Modelling approach to an ultrafiltration process for the removal of dissolved and colloidal substances from treated wastewater for reuse in recycled paper manufacturing. Journal of Water Process Engineering, 21, 96-106. doi:10.1016/j.jwpe.2017.11.017Shukla, S. K., Kumar, V., Van Doan, T., Yoo, K., Kim, Y., & Park, J. (2014). Combining activated sludge process with membrane separation to obtain recyclable quality water from paper mill effluent. Clean Technologies and Environmental Policy, 17(3), 781-788. doi:10.1007/s10098-014-0836-2Winter, J., Barbeau, B., & Bérubé, P. (2017). Nanofiltration and Tight Ultrafiltration Membranes for Natural Organic Matter Removal—Contribution of Fouling and Concentration Polarization to Filtration Resistance. Membranes, 7(3), 34. doi:10.3390/membranes7030034Kossar, M. J., Amaral, K. J., Martinelli, S. S., & Erbe, M. C. L. (2013). Proposal for water reuse in the Kraft pulp and paper industry. Water Practice and Technology, 8(3-4), 359-374. doi:10.2166/wpt.2013.036Beril Gönder, Z., Arayici, S., & Barlas, H. (2011). Advanced treatment of pulp and paper mill wastewater by nanofiltration process: Effects of operating conditions on membrane fouling. Separation and Purification Technology, 76(3), 292-302. doi:10.1016/j.seppur.2010.10.018Hubbe, M. A., Sundberg, A., Mocchiutti, P., Ni, Y., & Pelton, R. (2012). DISSOLVED AND COLLOIDAL SUBSTANCES (DCS) AND THE CHARGE DEMAND OF PAPERMAKING PROCESS WATERS AND SUSPENSIONS: A REVIEW. BioResources, 7(4). doi:10.15376/biores.7.4.6109-6193Puro, L., Tanninen, J., & Nyström, M. (2002). Analyses of organic foulants in membranes fouled by pulp and paper mill effluent using solid-liquid extraction. Desalination, 143(1), 1-9. doi:10.1016/s0011-9164(02)00215-1Wang, Z., Wu, Z., & Tang, S. (2009). Characterization of dissolved organic matter in a submerged membrane bioreactor by using three-dimensional excitation and emission matrix fluorescence spectroscopy. Water Research, 43(6), 1533-1540. doi:10.1016/j.watres.2008.12.033Tian, J., Yu, H., Shen, Y., Shi, W., Liu, D., Gao, S., & Cui, F. (2015). Identification of irreversible UF membrane foulants by fluorescence excitation–emission matrix coupled with parallel factor analysis. Desalination and Water Treatment, 57(46), 21794-21805. doi:10.1080/19443994.2015.1127783Jacquin, C., Teychene, B., Lemee, L., Lesage, G., & Heran, M. (2018). Characteristics and fouling behaviors of Dissolved Organic Matter fractions in a full-scale submerged membrane bioreactor for municipal wastewater treatment. Biochemical Engineering Journal, 132, 169-181. doi:10.1016/j.bej.2017.12.016Chen, W., Westerhoff, P., Leenheer, J. A., & Booksh, K. (2003). Fluorescence Excitation−Emission Matrix Regional Integration to Quantify Spectra for Dissolved Organic Matter. Environmental Science & Technology, 37(24), 5701-5710. doi:10.1021/es034354cPeiris, R. H., Hallé, C., Budman, H., Moresoli, C., Peldszus, S., Huck, P. M., & Legge, R. L. (2010). Identifying fouling events in a membrane-based drinking water treatment process using principal component analysis of fluorescence excitation-emission matrices. Water Research, 44(1), 185-194. doi:10.1016/j.watres.2009.09.036Peldszus, S., Hallé, C., Peiris, R. H., Hamouda, M., Jin, X., Legge, R. L., … Huck, P. M. (2011). Reversible and irreversible low-pressure membrane foulants in drinking water treatment: Identification by principal component analysis of fluorescence EEM and mitigation by biofiltration pretreatment. Water Research, 45(16), 5161-5170. doi:10.1016/j.watres.2011.07.022Yu, H., Qu, F., Liang, H., Han, Z., Ma, J., Shao, S., … Li, G. (2014). Understanding ultrafiltration membrane fouling by extracellular organic matter of Microcystis aeruginosa using fluorescence excitation–emission matrix coupled with parallel factor analysis. Desalination, 337, 67-75. doi:10.1016/j.desal.2014.01.014Liu, Y., Bo, S., Zhu, Y., & Zhang, W. (2003). Determination of molecular weight and molecular sizes of polymers by high temperature gel permeation chromatography with a static and dynamic laser light scattering detector. Polymer, 44(23), 7209-7220. doi:10.1016/j.polymer.2003.08.037Howe, K. J., Marwah, A., Chiu, K.-P., & Adham, S. S. (2006). Effect of Coagulation on the Size of MF and UF Membrane Foulants. Environmental Science & Technology, 40(24), 7908-7913. doi:10.1021/es0616480Chang, I.-S., & Kim, S.-N. (2005). Wastewater treatment using membrane filtration—effect of biosolids concentration on cake resistance. Process Biochemistry, 40(3-4), 1307-1314. doi:10.1016/j.procbio.2004.06.019Teychene, B., Collet, G., & Gallard, H. (2016). Modeling of combined particles and natural organic matter fouling of ultrafiltration membrane. Journal of Membrane Science, 505, 185-193. doi:10.1016/j.memsci.2016.01.039Bowen, W. R., Calvo, J. I., & Hernández, A. (1995). Steps of membrane blocking in flux decline during protein microfiltration. Journal of Membrane Science, 101(1-2), 153-165. doi:10.1016/0376-7388(94)00295-aVela, M. C. V., Blanco, S. Á., García, J. L., & Rodríguez, E. B. (2008). Analysis of membrane pore blocking models applied to the ultrafiltration of PEG. Separation and Purification Technology, 62(3), 489-498. doi:10.1016/j.seppur.2008.02.028Korshin, G. V., Li, C.-W., & Benjamin, M. M. (1997). The decrease of UV absorbance as an indicator of TOX formation. Water Research, 31(4), 946-949. doi:10.1016/s0043-1354(96)00393-4Archer, A. D., & Singer, P. C. (2006). An evaluation of the relationship between SUVA and NOM coagulation using the ICR database. Journal - American Water Works Association, 98(7), 110-123. doi:10.1002/j.1551-8833.2006.tb07715.xEdzwald, J. K., & Tobiason, J. E. (1999). Enhanced Coagulation: US Requirements and a Broader View. Water Science and Technology, 40(9), 63-70. doi:10.2166/wst.1999.0444Martínez, C., Gómez, V., Pocurull, E., & Borrull, F. (2014). Characterization of organic fouling in reverse osmosis membranes by headspace solid phase microextraction and gas chromatography–mass spectrometry. Water Science and Technology, 71(1), 117-125. doi:10.2166/wst.2014.475Puro, L., Kallioinen, M., Mänttäri, M., & Nyström, M. (2011). Evaluation of behavior and fouling potential of wood extractives in ultrafiltration of pulp and paper mill process water. Journal of Membrane Science, 368(1-2), 150-158. doi:10.1016/j.memsci.2010.11.032Carstea, E. M., Bridgeman, J., Baker, A., & Reynolds, D. M. (2016). Fluorescence spectroscopy for wastewater monitoring: A review. Water Research, 95, 205-219. doi:10.1016/j.watres.2016.03.021Shao, S., Liang, H., Qu, F., Yu, H., Li, K., & Li, G. (2014). Fluorescent natural organic matter fractions responsible for ultrafiltration membrane fouling: Identification by adsorption pretreatment coupled with parallel factor analysis of excitation–emission matrices. Journal of Membrane Science, 464, 33-42. doi:10.1016/j.memsci.2014.03.071Goletz, C., Wagner, M., Grübel, A., Schmidt, W., Korf, N., & Werner, P. (2011). Standardization of fluorescence excitation–emission-matrices in aquatic milieu. Talanta, 85(1), 650-656. doi:10.1016/j.talanta.2011.04.045Park, M., & Snyder, S. A. (2018). Sample handling and data processing for fluorescent excitation-emission matrix (EEM) of dissolved organic matter (DOM). Chemosphere, 193, 530-537. doi:10.1016/j.chemosphere.2017.11.069Jacquin, C., Lesage, G., Traber, J., Pronk, W., & Heran, M. (2017). Three-dimensional excitation and emission matrix fluorescence (3DEEM) for quick and pseudo-quantitative determination of protein- and humic-like substances in full-scale membrane bioreactor (MBR). Water Research, 118, 82-92. doi:10.1016/j.watres.2017.04.009Miao, Q., Huang, L., & Chen, L. (2012). Advances in the Control of Dissolved and Colloidal Substances Present in Papermaking Processes: A Brief Review. BioResources, 8(1). doi:10.15376/biores.8.1.1431-1455Wang, Z., Wu, Z., Yin, X., & Tian, L. (2008). Membrane fouling in a submerged membrane bioreactor (MBR) under sub-critical flux operation: Membrane foulant and gel layer characterization. Journal of Membrane Science, 325(1), 238-244. doi:10.1016/j.memsci.2008.07.035Zhu, X., Wang, Z., & Wu, Z. (2011). Characterization of membrane foulants in a full-scale membrane bioreactor for supermarket wastewater treatment. Process Biochemistry, 46(4), 1001-1009. doi:10.1016/j.procbio.2011.01.020Crozes, G., Anselme, C., & Mallevialle, J. (1993). Effect of adsorption of organic matter on fouling of ultrafiltration membranes. Journal of Membrane Science, 84(1-2), 61-77. doi:10.1016/0376-7388(93)85051-wLiu, Y., Li, X., Yang, Y., Ye, W., Ji, S., Ren, J., & Zhou, Z. (2014). Analysis of the major particle-size based foulants responsible for ultrafiltration membrane fouling in polluted raw water. Desalination, 347, 191-198. doi:10.1016/j.desal.2014.05.039Belfer, S., Fainchtain, R., Purinson, Y., & Kedem, O. (2000). Surface characterization by FTIR-ATR spectroscopy of polyethersulfone membranes-unmodified, modified and protein fouled. Journal of Membrane Science, 172(1-2), 113-124. doi:10.1016/s0376-7388(00)00316-1Howe, K. J., Ishida, K. P., & Clark, M. M. (2002). Use of ATR/FTIR spectrometry to study fouling of microfiltration membranes by natural waters. Desalination, 147(1-3), 251-255. doi:10.1016/s0011-9164(02)00545-3Jarusutthirak, C., Amy, G., & Croué, J.-P. (2002). Fouling characteristics of wastewater effluent organic matter (EfOM) isolates on NF and UF membranes. Desalination, 145(1-3), 247-255. doi:10.1016/s0011-9164(02)00419-8Goh, Y. T., Harris, J. L., & Roddick, F. A. (2011). Impact of Microcystis aeruginosa on membrane fouling in a biologically treated effluent. Water Science and Technology, 63(12), 2853-2859. doi:10.2166/wst.2011.450Maruyama, T. (2001). FT-IR analysis of BSA fouled on ultrafiltration and microfiltration membranes. Journal of Membrane Science, 192(1-2), 201-207. doi:10.1016/s0376-7388(01)00502-6Her, N., Amy, G., Park, H.-R., & Song, M. (2004). Characterizing algogenic organic matter (AOM) and evaluating associated NF membrane fouling. Water Research, 38(6), 1427-1438. doi:10.1016/j.watres.2003.12.008Kimura, K., Yamato, N., Yamamura, H., & Watanabe, Y. (2005). Membrane Fouling in Pilot-Scale Membrane Bioreactors (MBRs) Treating Municipal Wastewater. Environmental Science & Technology, 39(16), 6293-6299. doi:10.1021/es0502425Carlsson, D. ., Dal-Cin, M. ., Black, P., & Lick, C. . (1998). A surface spectroscopic study of membranes fouled by pulp mill effluent1Issued as NRC #41964.1. Journal of Membrane Science, 142(1), 1-11. doi:10.1016/s0376-7388(97)00305-0Erkan, H. S., & Engin, G. O. (2017). The investigation of paper mill industry wastewater treatment and activated sludge properties in a submerged membrane bioreactor. Water Science and Technology, 76(7), 1715-1725. doi:10.2166/wst.2017.35

    Medición de la conductividad hidráulica bajo trayectorias horizontales en suelos granulares

    Get PDF
    In geotechnical structures, the permeability-dependent stability analysis is generally evaluated under vertical trajectories, because most permeameters are configured so that the water passes through the porous medium in this way. However, it is clear from the physical point of view that water can flow along different paths, including preferential ways that can include horizontal trajectories, parallel to the deposit of the stratum. The foregoing implies that both the vertical and horizontal component of the hydraulic conductivity or permeability coefficient must be estimated for a given stratum. The current research aims to explore possibilities for measuring the coefficient of permeability in horizontal trajectories, on granular soils, under a constant condition of relative density. For this purpose, a special chamber attached to a constant head permeameter was designed and constructed, which allows to measure the permeability in conditions of horizontal flow parallel to the soil layers. The proposed camera also admits the estimation of the permeability coefficient by combining stratifications of different granular soils, where the trajectories are not perfectly horizontal, but have diagonal paths. The results are compared with data obtained by conventional vertical flow permeameters, in order to check the difference in the measurements considering both situations in the samples. As a conclusion, it is important to report that there is evidently a difference in the permeability coefficients measured under different trajectories,En las estructuras geotécnicas generalmente el análisis de estabilidad dependiente de la permeabilidad, es evaluado bajo trayectorias verticales, debido a que la mayoría de permeámetros están configurados para que el agua atraviese de esta manera el medio poroso. No obstante, es claro desde el punto de vista físico que el agua puede fluir siguiendo diferentes caminos, entre ellos recorridos preferenciales que pueden incluir trayectorias horizontales paralelas a la depositación del estrato. Lo anterior implica que se debe estimar para un estrato, tanto la componente vertical, como horizontal de la conductividad hidráulica o coeficiente de permeabilidad. En la investigación actual se pretende explorar posibilidades de medición del coeficiente de permeabilidad en trayectorias horizontales, en suelos granulares, bajo una condición constante de densidad relativa. Para ello se diseñó y construyó una cámara especial adosada a un permeámetro de cabeza constante, que permite medir la permeabilidad en condiciones de flujo horizontal paralelo a los estratos. La cámara propuesta admite también, la estimación del coeficiente de permeabilidad combinando estratificaciones de diferentes suelos granulares, donde las trayectorias no son perfectamente horizontales, sino presentan recorridos diagonales. Los resultados son comparados con datos obtenidos mediante permeámetros convencionales de flujo vertical, con el fin de comprobar la diferencie en las mediciones considerando ambas situaciones en las muestras. Como conclusión generar es importante reportar que evidentemente existe una diferencia en los coeficientes de permeabilidad medidos bajo diferentes trayectorias

    HOW TO GUIDE CHEMICAL ENGINEERING STUDENTS IN THE SOLUTION OF COMPLEX ENGINEERING PROBLEMS

    Full text link
    [EN] If we analyse some of the specific skills of Chemical Engineering degree, and it would not be very different in other disciplines of engineering, the verbs design, analyse or simulate stand out above all. In essence, calculating is an intrinsic activity for the engineer and, therefore, for engineering students. How is this activity developed? When we face a real problem we translate it into mathematical language (modelling). We solve the resulting mathematical problem to obtain the mathematical solution (simulation). The analysis of the results allows us to extract information from the real problem. If the interpretation of the results does not fit with the real problem studied, we must rethink the mathematical model obtained, and so on. Teachers often restrict the real problems that students face to simple situations so that the resulting mathematical problem is simple and, if possible, provides an analytical solution. Why should we do this today if we have numerical methods, a big computing power and mathematical software available to our students? Examples of complex mathematical problems arise from analysis and design of heat exchangers, chemical reactors, distillation columns, etc, both in steady and transitory regimes. These mathematical problems can be classified in groups: solving algebraic equations, ordinary differential equations or partial differential equations systems. According to this classification, some teachers of the Chemical Engineering degree at Campus of Alcoy are providing our students with Matlab guide templates to solve these types of mathematical problems, regardless of the subjects in which these problems appear. This action makes it easier for students to face real problems by reducing the mathematical difficulties associated. This paper shows how these Matlab guide templates are and how students use them in different subjects. It allows students to focus on the engineering aspect of the processes, leaving the difficulty of the associated mathematical problem in a second plane. It also makes easy to modify process parameters to quickly see the effect on the main variables of the process (what if? analysis). Consequently, students improve their ability to analyse and interpret the results obtained and their critical thinking skills. And, finally, they know useful computer tools that can be used both academically and professionallyCarbonell Alcaina, C.; Cardona, SC.; Domínguez-Candela, I.; Fombuena, V.; López Pérez, MF.; Lora-García, J. (2021). HOW TO GUIDE CHEMICAL ENGINEERING STUDENTS IN THE SOLUTION OF COMPLEX ENGINEERING PROBLEMS. IATED. 9442-9450. https://doi.org/10.21125/inted.2021.1977S9442945

    Educación musical performativa en la formación de intérpretes. Un estudio de caso

    Get PDF
    La educación musical postmoderna viene reclamando la utilización de nuevos modos de conceptualizar los procesos de enseñanza-aprendizaje que hagan más significativos y eficaces los procesos de apropiación y empoderamiento musicales, utilizando para ello herramientas derivadas de la música moderna, del aprendizaje rizomático o del propio contexto social de los participantes. Gracias a esto surgen, entre otras propuestas pedagógicas, el Aprendizaje Musical Informal y la Educación Musical Performativa. La presente investigación es un estudio de caso sobre clases instrumentales colectivas en una institución superior de música de España y de cómo sus prácticas metodológicas se aproximan a las arriba mencionadas, teniendo como base un ambiente de aprendizaje flexible y democrático que repercute de forma significativa en la formación de futuros músicos profesionale

    Educational inclusion and its influence on school performance

    Get PDF
    Inclusive education is understood as being with each other, how to face adversity, how to face differences. A set of principles that ensure that the student with a disability is seen as a valuable and necessary member in all aspects of the school community. A movement towards expanding the possibilities of “ordinary” schools so that they can include a greater diversity of students. Schools that offer a curriculum to students through organizational planning different from those of schools that exclude some students from their regular classes. Not even briefly, it is convenient to refer to the reasons that support the movement towards an inclusive school. They are certainly several and of a different nature; on the one hand, from a psycho-pedagogical point of view, there is a conception of development of social origin; the decisive importance of interaction for learning is recognized; The responsibility of adults in determining the nature of the experiences offered to students (relationship with materials and classmates) is decisive, which is why a decisive role is attributed to the school as a development context

    Operating Conditions Optimization via the Taguchi Method to Remove Colloidal Substances from Recycled Paper and Cardboard Production Wastewater

    Full text link
    [EN] Optimization of the ultrafiltration (UF) process to remove colloidal substances from a paper mill's treated effluent was investigated in this study. The effects of four operating parameters in a UF system (transmembrane pressure (TMP), cross-flow velocity (CFV), temperature and molecular weight cut-off (MWCO)) on the average permeate flux (J(v)), organic matter chemical oxygen demand (COD) rejection rate and the cumulative flux decline (SFD), was investigated by robust experimental design using the Taguchi method. Analysis of variance (ANOVA) for an L(9)orthogonal array were used to determine the significance of the individual factors, that is to say, to determine which factor has more and which less influence over the UF response variables. Analysis of the percentage contribution (P%) indicated that the TMP and MWCO have the greatest contribution to the average permeate flux and SFD. In the case of the COD rejection rate, the results showed that MWCO has the highest contribution followed by CFV. The Taguchi method and the utility concept were employed to optimize the multiple response variables. The optimal conditions were found to be 2.0 bar of transmembrane pressure, 1.041 m/s of the cross-flow velocity, 15 degrees C of the temperature, and 100 kDa MWCO. The validation experiments under the optimal conditions achievedJ(v), COD rejection rate and SFD results of 81.15 L center dot m(-2)center dot h(-1), 43.90% and 6.01, respectively. Additionally, SST and turbidity decreased by about 99% and 99.5%, respectively, and reduction in particle size from around 458-1281 nm to 12.71-24.36 nm was achieved. The field-emission scanning electron microscopy images under optimal conditions showed that membrane fouling takes place at the highest rate in the first 30 min of UF. The results demonstrate the validity of the approach of using the Taguchi method and utility concept to obtain the optimal membrane conditions for the wastewater treatment using a reduced number of experiments.Sousa, MRS.; Lora-García, J.; López Pérez, MF.; Santafé Moros, MA.; Gozálvez-Zafrilla, JM. (2020). Operating Conditions Optimization via the Taguchi Method to Remove Colloidal Substances from Recycled Paper and Cardboard Production Wastewater. Membranes. 10(8):1-22. https://doi.org/10.3390/membranes10080170S122108Sevimli, M. F. (2005). Post-Treatment of Pulp and Paper Industry Wastewater by Advanced Oxidation Processes. Ozone: Science & Engineering, 27(1), 37-43. doi:10.1080/01919510590908968Key Statistics Report 2017|CEPI-CONFEDERATION OF EUROPEAN PAPER INDUSTRIEShttp://www.cepi.org/keystatistics2017Rajkumar, K. (2016). An Evaluation of Biological Approach for the Effluent Treatment of Paper Boards Industry - An Economic Perspective. Journal of Bioremediation & Biodegradation, 7(5). doi:10.4172/2155-6199.1000366AHMAD, A., WONG, S., TENG, T., & ZUHAIRI, A. (2008). Improvement of alum and PACl coagulation by polyacrylamides (PAMs) for the treatment of pulp and paper mill wastewater. Chemical Engineering Journal, 137(3), 510-517. doi:10.1016/j.cej.2007.03.088Temmink, H., & Grolle, K. (2005). Tertiary activated carbon treatment of paper and board industry wastewater. Bioresource Technology, 96(15), 1683-1689. doi:10.1016/j.biortech.2004.12.035Zhang, Q., & Chuang, K. T. (2001). Adsorption of organic pollutants from effluents of a Kraft pulp mill on activated carbon and polymer resin. Advances in Environmental Research, 5(3), 251-258. doi:10.1016/s1093-0191(00)00059-9Catalkaya, E. C., & Kargi, F. (2008). Advanced oxidation treatment of pulp mill effluent for TOC and toxicity removals. Journal of Environmental Management, 87(3), 396-404. doi:10.1016/j.jenvman.2007.01.016Pérez, M., Torrades, F., Garcı́a-Hortal, J. A., Domènech, X., & Peral, J. (2002). Removal of organic contaminants in paper pulp treatment effluents under Fenton and photo-Fenton conditions. Applied Catalysis B: Environmental, 36(1), 63-74. doi:10.1016/s0926-3373(01)00281-8Gönder, Z. B., Arayici, S., & Barlas, H. (2012). Treatment of Pulp and Paper Mill Wastewater Using Utrafiltration Process: Optimization of the Fouling and Rejections. Industrial & Engineering Chemistry Research, 51(17), 6184-6195. doi:10.1021/ie2024504Liu, G., Liu, Y., Ni, J., Shi, H., & Qian, Y. (2004). Treatability of kraft spent liquor by microfiltration and andultrafiltration. Desalination, 160(2), 131-141. doi:10.1016/s0011-9164(04)90003-3Nuortila-Jokinen, J., Mänttäri, M., Huuhilo, T., Kallioinen, M., & Nyström, M. (2004). Water circuit closure with membrane technology in the pulp and paper industry. Water Science and Technology, 50(3), 217-227. doi:10.2166/wst.2004.0199Zaidi, A., Buisson, H., Sourirajan, S., & Wood, H. (1992). Ultra- and Nano-Filtration in Advanced Effluent Treatment Schemes for Pollution Control in the Pulp and Paper Industry. Water Science and Technology, 25(10), 263-276. doi:10.2166/wst.1992.0254Toczyłowska-Mamińska, R. (2017). Limits and perspectives of pulp and paper industry wastewater treatment – A review. Renewable and Sustainable Energy Reviews, 78, 764-772. doi:10.1016/j.rser.2017.05.021Kamali, M., & Khodaparast, Z. (2015). Review on recent developments on pulp and paper mill wastewater treatment. Ecotoxicology and Environmental Safety, 114, 326-342. doi:10.1016/j.ecoenv.2014.05.005Beril Gönder, Z., Arayici, S., & Barlas, H. (2011). Advanced treatment of pulp and paper mill wastewater by nanofiltration process: Effects of operating conditions on membrane fouling. Separation and Purification Technology, 76(3), 292-302. doi:10.1016/j.seppur.2010.10.018Shukla, S. K., Kumar, V., Van Doan, T., Yoo, K., Kim, Y., & Park, J. (2014). Combining activated sludge process with membrane separation to obtain recyclable quality water from paper mill effluent. Clean Technologies and Environmental Policy, 17(3), 781-788. doi:10.1007/s10098-014-0836-2Chen, C., Mao, S., Wang, J., Bao, J., Xu, H., Su, W., & Dai, H. (2015). Application of Ultrafiltration in a Paper Mill: Process Water Reuse and Membrane Fouling Analysis. BioResources, 10(2). doi:10.15376/biores.10.2.2376-2391Krawczyk, H., Oinonen, P., & Jönsson, A.-S. (2013). Combined membrane filtration and enzymatic treatment for recovery of high molecular mass hemicelluloses from chemithermomechanical pulp process water. Chemical Engineering Journal, 225, 292-299. doi:10.1016/j.cej.2013.03.089Sousa, M. R. S., Lora-Garcia, J., & López-Pérez, M.-F. (2018). Modelling approach to an ultrafiltration process for the removal of dissolved and colloidal substances from treated wastewater for reuse in recycled paper manufacturing. Journal of Water Process Engineering, 21, 96-106. doi:10.1016/j.jwpe.2017.11.017Karthik, M., Dhodapkar, R., Manekar, P., Aswale, P., & Nandy, T. (2011). Closing water loop in a paper mill section for water conservation and reuse. Desalination, 281, 172-178. doi:10.1016/j.desal.2011.07.055Mänttäri, M., Nuortila-Jokinen, J., & Nyström, M. (1997). Evaluation of nanofiltration membranes for filtration of paper mill total effluent. Filtration & Separation, 34(3), 275-280. doi:10.1016/s0015-1882(97)84794-5Cassano, A., Conidi, C., & Drioli, E. (2011). Comparison of the performance of UF membranes in olive mill wastewaters treatment. Water Research, 45(10), 3197-3204. doi:10.1016/j.watres.2011.03.041Puro, L., Tanninen, J., & Nyström, M. (2002). Analyses of organic foulants in membranes fouled by pulp and paper mill effluent using solid-liquid extraction. Desalination, 143(1), 1-9. doi:10.1016/s0011-9164(02)00215-1Puro, L., Kallioinen, M., Mänttäri, M., & Nyström, M. (2011). Evaluation of behavior and fouling potential of wood extractives in ultrafiltration of pulp and paper mill process water. Journal of Membrane Science, 368(1-2), 150-158. doi:10.1016/j.memsci.2010.11.032Hesampour, M., Krzyzaniak, A., & Nyström, M. (2008). The influence of different factors on the stability and ultrafiltration of emulsified oil in water. Journal of Membrane Science, 325(1), 199-208. doi:10.1016/j.memsci.2008.07.048Pourjafar, S., Jahanshahi, M., & Rahimpour, A. (2013). Optimization of TiO2 modified poly(vinyl alcohol) thin film composite nanofiltration membranes using Taguchi method. Desalination, 315, 107-114. doi:10.1016/j.desal.2012.08.029Reyhani, A., Sepehrinia, K., Seyed Shahabadi, S. M., Rekabdar, F., & Gheshlaghi, A. (2014). Optimization of operating conditions in ultrafiltration process for produced water treatment via Taguchi methodology. Desalination and Water Treatment, 54(10), 2669-2680. doi:10.1080/19443994.2014.904821Rezvanpour, A., Roostaazad, R., Hesampour, M., Nyström, M., & Ghotbi, C. (2009). Effective factors in the treatment of kerosene–water emulsion by using UF membranes. Journal of Hazardous Materials, 161(2-3), 1216-1224. doi:10.1016/j.jhazmat.2008.04.074Salahi, A., Abbasi, M., & Mohammadi, T. (2010). Permeate flux decline during UF of oily wastewater: Experimental and modeling. Desalination, 251(1-3), 153-160. doi:10.1016/j.desal.2009.08.006Salahi, A., & Mohammadi, T. (2011). Oily wastewater treatment by ultrafiltration using Taguchi experimental design. Water Science and Technology, 63(7), 1476-1484. doi:10.2166/wst.2011.383Ezzati, A., Gorouhi, E., & Mohammadi, T. (2005). Separation of water in oil emulsions using microfiltration. Desalination, 185(1-3), 371-382. doi:10.1016/j.desal.2005.03.086Kaladhar, M., Subbaiah, K. V., Rao, C. S., … Rao, K. N. (2011). Application of Taguchi approach and Utility Concept in solving the Multi-objective Problem when turning AISI 202 Austenitic Stainless Steel. Journal of Engineering Science and Technology Review, 4(1), 55-61. doi:10.25103/jestr.041.08Mohammadi, T., & Safavi, M. A. (2009). Application of Taguchi method in optimization of desalination by vacuum membrane distillation. Desalination, 249(1), 83-89. doi:10.1016/j.desal.2009.01.017Khan, M. M. T., Takizawa, S., Lewandowski, Z., Jones, W. L., Camper, A. K., Katayama, H., … Ohgaki, S. (2011). Membrane fouling due to dynamic particle size changes in the aerated hybrid PAC–MF system. Journal of Membrane Science, 371(1-2), 99-107. doi:10.1016/j.memsci.2011.01.017Rezaei, H., Ashtiani, F. Z., & Fouladitajar, A. (2014). Fouling behavior and performance of microfiltration membranes for whey treatment in steady and unsteady-state conditions. Brazilian Journal of Chemical Engineering, 31(2), 503-518. doi:10.1590/0104-6632.20140312s00002521Cojocaru, C., & Zakrzewska-Trznadel, G. (2007). Response surface modeling and optimization of copper removal from aqua solutions using polymer assisted ultrafiltration. Journal of Membrane Science, 298(1-2), 56-70. doi:10.1016/j.memsci.2007.04.001Idris, A. (2002). Optimization of cellulose acetate hollow fiber reverse osmosis membrane production using Taguchi method. Journal of Membrane Science, 205(1-2), 223-237. doi:10.1016/s0376-7388(02)00116-3Kumar, Y., & Singh, H. (2014). Multi-response Optimization in Dry Turning Process Using Taguchi’s Approach and Utility Concept. Procedia Materials Science, 5, 2142-2151. doi:10.1016/j.mspro.2014.07.417Song, L. (1998). Flux decline in crossflow microfiltration and ultrafiltration: mechanisms and modeling of membrane fouling. Journal of Membrane Science, 139(2), 183-200. doi:10.1016/s0376-7388(97)00263-9Xu, J., Chang, C.-Y., & Gao, C. (2010). Performance of a ceramic ultrafiltration membrane system in pretreatment to seawater desalination. Separation and Purification Technology, 75(2), 165-173. doi:10.1016/j.seppur.2010.07.020Seyed Shahabadi, S. M., & Reyhani, A. (2014). Optimization of operating conditions in ultrafiltration process for produced water treatment via the full factorial design methodology. Separation and Purification Technology, 132, 50-61. doi:10.1016/j.seppur.2014.04.051Ennil Köse, T. (2008). Agricultural residue anion exchanger for removal of dyestuff from wastewater using full factorial design. Desalination, 222(1-3), 323-330. doi:10.1016/j.desal.2007.01.156Gönder, Z. B., Kaya, Y., Vergili, I., & Barlas, H. (2010). Optimization of filtration conditions for CIP wastewater treatment by nanofiltration process using Taguchi approach. Separation and Purification Technology, 70(3), 265-273. doi:10.1016/j.seppur.2009.10.001Reyhani, A., & Hemmati, M. (2013). Wastewater treatment by ultrafiltration system, considering the effects of operating conditions: experimental and modeling. Desalination and Water Treatment, 52(34-36), 6282-6294. doi:10.1080/19443994.2013.81558

    Estudio de valores antropométricos para la región nororiental colombiana.

    Get PDF
    Having obtained the anthropometric and somatometric data of a population sample with 95% confidence level, the corresponding data processing was done to obtain anthropometric tables in strict sense. A preliminary analysis done from a bibliographical review determined one first hypothesis related with the correlation of the biometric information and, afterwards, a second hypothesis related with the physiological constitution of the population.Después de obtener los datos antropométricos y somatométricos de una muestra poblacional de la región nororiental colombiana, con un nivel de confianza del 95%, se efectuó el análisis de los mismos para la construcción de las correspondientes tablas antropométricas representativas. Un análisis preliminar, hecho a partir de la revisión bibliográfica, permitió definir una primera hipótesis para establecer la correlación entre los datos biométricos y, posteriormente, una segunda hipótesis relacionada con la constitución fisiológica de la población. &nbsp
    corecore