11 research outputs found

    Pharyngeal carriage of Neisseria species in the African meningitis belt.

    Get PDF
    OBJECTIVES: Neisseria meningitidis, together with the non-pathogenic Neisseria species (NPNs), are members of the complex microbiota of the human pharynx. This paper investigates the influence of NPNs on the epidemiology of meningococcal infection. METHODS: Neisseria isolates were collected during 18 surveys conducted in six countries in the African meningitis belt between 2010 and 2012 and characterized at the rplF locus to determine species and at the variable region of the fetA antigen gene. Prevalence and risk factors for carriage were analyzed. RESULTS: A total of 4694 isolates of Neisseria were obtained from 46,034 pharyngeal swabs, a carriage prevalence of 10.2% (95% CI, 9.8-10.5). Five Neisseria species were identified, the most prevalent NPN being Neisseria lactamica. Six hundred and thirty-six combinations of rplF/fetA_VR alleles were identified, each defined as a Neisseria strain type. There was an inverse relationship between carriage of N. meningitidis and of NPNs by age group, gender and season, whereas carriage of both N. meningitidis and NPNs was negatively associated with a recent history of meningococcal vaccination. CONCLUSION: Variations in the prevalence of NPNs by time, place and genetic type may contribute to the particular epidemiology of meningococcal disease in the African meningitis belt

    Pharyngeal carriage of Neisseria species in the African meningitis belt.

    Get PDF
    OBJECTIVES: Neisseria meningitidis, together with the non-pathogenic Neisseria species (NPNs), are members of the complex microbiota of the human pharynx. This paper investigates the influence of NPNs on the epidemiology of meningococcal infection. METHODS: Neisseria isolates were collected during 18 surveys conducted in six countries in the African meningitis belt between 2010 and 2012 and characterized at the rplF locus to determine species and at the variable region of the fetA antigen gene. Prevalence and risk factors for carriage were analyzed. RESULTS: A total of 4694 isolates of Neisseria were obtained from 46,034 pharyngeal swabs, a carriage prevalence of 10.2% (95% CI, 9.8-10.5). Five Neisseria species were identified, the most prevalent NPN being Neisseria lactamica. Six hundred and thirty-six combinations of rplF/fetA_VR alleles were identified, each defined as a Neisseria strain type. There was an inverse relationship between carriage of N. meningitidis and of NPNs by age group, gender and season, whereas carriage of both N. meningitidis and NPNs was negatively associated with a recent history of meningococcal vaccination. CONCLUSION: Variations in the prevalence of NPNs by time, place and genetic type may contribute to the particular epidemiology of meningococcal disease in the African meningitis belt.MenAfriCar was funded by the Wellcome Trust (086546/Z/08/Z) and the Bill and Melinda Gates Foundation (51251). Kanny Diallo holds a Wellcome Trust Training Fellowship in Public Health and Tropical Medicine.This is the final version of the article. It first appeared from Elsevier via https://doi.org/10.1016/j.jinf.2016.03.01

    Emergence and spread of two SARS-CoV-2 variants of interest in Nigeria.

    Get PDF
    Identifying the dissemination patterns and impacts of a virus of economic or health importance during a pandemic is crucial, as it informs the public on policies for containment in order to reduce the spread of the virus. In this study, we integrated genomic and travel data to investigate the emergence and spread of the SARS-CoV-2 B.1.1.318 and B.1.525 (Eta) variants of interest in Nigeria and the wider Africa region. By integrating travel data and phylogeographic reconstructions, we find that these two variants that arose during the second wave in Nigeria emerged from within Africa, with the B.1.525 from Nigeria, and then spread to other parts of the world. Data from this study show how regional connectivity of Nigeria drove the spread of these variants of interest to surrounding countries and those connected by air-traffic. Our findings demonstrate the power of genomic analysis when combined with mobility and epidemiological data to identify the drivers of transmission, as bidirectional transmission within and between African nations are grossly underestimated as seen in our import risk index estimates

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    The Risk Factors Associated with Rotavirus Gastroenteritis among Children Under Five Years at University of Maiduguri Teaching Hospital, Borno State, Nigeria

    Get PDF
    Background: Diarrhea is a major cause of childhood morbidity and mortality in both developing and developed countries. It remains a common cause of hospitalization worldwide. Rotavirus is a cause of acute watery diarrhea in children under five years of age. The incidence of diarrhea decreases with increasing age. Aim: This study aimed at finding some risk factors associated with rotavirus infection in children <five years of age presenting with acute diarrhea at the university of Maiduguri teaching hospital. Patient, Materials and Methods: This is a cross-sectional study. Atotal of 173 children <five years presenting with diarrhea of <two weeks were recruited for the study. Stool samples were collected, and rotavirus antigen was detected using immunochromatographic, and the positive sample was then further analyzed using reverse transcriptase polymerase chain reaction for the VP4 and VP7 genotyping. The risk factors were analyzed using multivariate analysis conditional regression model after collecting data using a well‑structured questionnaire. Results: The Source of water supply and presence of persons with gastroenteritis in the household were found to be risk factors for acquiring the infection with statistically significant P < 0.05. Breastfeeding was found to be protective of rotavirus gastroenteritis. Conclusion: Rotaviruses cause morbidity and mortality in children under five years of age. In view of the associated risk factors, making available safe drinking water and encouraging good personal hygiene is important. Promotion of exclusive breastfeeding and vaccination is advocated. Public health strategies like creating awareness to affected communities are a good strategy

    Methods for identifying Neisseria meningitidis carriers: a multi-center study in the African meningitis belt.

    Get PDF
    OBJECTIVE: Detection of meningococcal carriers is key to understanding the epidemiology of Neisseria meningitidis, yet no gold standard has been established. Here, we directly compare two methods for collecting pharyngeal swabs to identify meningococcal carriers. METHODS: We conducted cross-sectional surveys of schoolchildren at multiple sites in Africa to compare swabbing the posterior pharynx behind the uvula (U) to swabbing the posterior pharynx behind the uvula plus one tonsil (T). Swabs were cultured immediately and analyzed using molecular methods. RESULTS: One thousand and six paired swab samples collected from schoolchildren in four countries were analyzed. Prevalence of meningococcal carriage was 6.9% (95% CI: 5.4-8.6%) based on the results from both swabs, but the observed prevalence was lower based on one swab type alone. Prevalence based on the T swab or the U swab alone was similar (5.2% (95% CI: 3.8-6.7%) versus 4.9% (95% CI: 3.6-6.4%) respectively (p=0.6)). The concordance between the two methods was 96.3% and the kappa was 0.61 (95% CI: 0.50-0.73), indicating good agreement. CONCLUSIONS: These two commonly used methods for collecting pharyngeal swabs provide consistent estimates of the prevalence of carriage, but both methods misclassified carriers to some degree, leading to underestimates of the prevalence

    Diagnostic performance of a colorimetric RT -LAMP for the identification of SARS-CoV-2: A multicenter prospective clinical evaluation in sub-Saharan Africa

    Get PDF
    Management and control of the COVID-19 pandemic caused by the severe acute respiratory syndrome coronavirus SARS-CoV-2 is critically dependent on quick and reliable identification of the virus in clinical specimens. Detection of viral RNA by a colorimetric reverse transcription loop-mediated isothermal amplification (RT-LAMP) is a simple, reliable and cost-effective assay, deployable in resource-limited settings (RLS). Our objective was to evaluate the intrinsic and extrinsic performances of RT-LAMP in RLS
    corecore