1,656 research outputs found

    Target effects in negative-continuum assisted dielectronic recombination

    Full text link
    The process of recombination of a quasi-free electron into a bound state of an initially bare nucleus with the simultaneous creation of a bound-electron--free-positron pair is investigated. This process is called the negative-continuum assisted dielectronic recombination (NCDR). In a typical experimental setup, the initial electron is not free but bound in a light atomic target. In the present work, we study the effects of the atomic target on the single and double-differential cross sections of the positron production in the NCDR process. The calculations are performed within the relativistic framework based on QED theory, with accounting for the electron-electron interaction to first order in perturbation theory. We demonstrate how the momentum distribution of the target electrons removes the non-physical singularity of the differential cross section which occurs for the initially free and monochromatic electrons

    Post-Wick theorems for symbolic manipulation of second-quantized expressions in atomic many-body perturbation theory

    Full text link
    Manipulating expressions in many-body perturbation theory becomes unwieldily with increasing order of the perturbation theory. Here I derive a set of theorems for efficient simplification of such expressions. The derived rules are specifically designed for implementing with symbolic algebra tools. As an illustration, we count the numbers of Brueckner-Goldstone diagrams in the first several orders of many-body perturbation theory for matrix elements between two states of a mono-valent system.Comment: J. Phys. B. (in press); Mathematica packages available from http://wolfweb.unr.edu/homepage/andrei/WWW-tap/mathematica.htm

    Classical analogy for the deflection of flux avalanches by a metallic layer

    Get PDF
    Sudden avalanches of magnetic flux bursting into a superconducting sample undergo deflections of their trajectories when encountering a conductive layer deposited on top of the superconductor. Remarkably, in some cases flux is totally excluded from the area covered by the conductive layer. We present a simple classical model that accounts for this behaviour and considers a magnetic monopole approaching a semi-infinite conductive plane. This model suggests that magnetic braking is an important mechanism responsible for avalanche deflection.Comment: 14 pages, 5 figure

    Quantifying cell-generated forces: Poisson's ratio matters

    Get PDF
    Quantifying mechanical forces generated by cellular systems has led to key insights into a broad range of biological phenomena from cell adhesion to immune cell activation. Traction force microscopy (TFM), the most widely employed force measurement methodology, fundamentally relies on knowledge of the force-displacement relationship and mechanical properties of the substrate. Together with the elastic modulus, the Poisson’s ratio is a basic material property that to date has largely been overlooked in TFM. Here, we evaluate the sensitivity of TFM to Poisson’s ratio by employing a series of computer simulations and experimental data analysis. We demonstrate how applying the correct Poisson’s ratio is important for accurate force reconstruction and develop a framework for the determination of error levels resulting from the misestimation of the Poisson’s ratio. In addition, we provide experimental estimation of the Poisson’s ratios of elastic substrates commonly applied in TFM. Our work thus highlights the role of Poisson’s ratio underpinning cellular force quantification studied across many biological systems

    Fragmentation and systematics of the Pygmy Dipole Resonance in the stable N=82 isotones

    Full text link
    The low-lying electric dipole (E1) strength in the semi-magic nucleus 136Xe has been measured which finalizes the systematic survey to investigate the so-called pygmy dipole resonance (PDR) in all stable even N=82 isotones with the method of nuclear resonance fluorescence using real photons in the entrance channel. In all cases, a fragmented resonance-like structure of E1 strength is observed in the energy region 5 MeV to 8 MeV. An analysis of the fragmentation of the strength reveals that the degree of fragmentation decreases towards the proton-deficient isotones while the total integrated strength increases indicating a dependence of the total strength on the neutron-to-proton ratio. The experimental results are compared to microscopic calculations within the quasi-particle phonon model (QPM). The calculation includes complex configurations of up to three phonons and is able to reproduce also the fragmentation of the E1 strength which allows to draw conclusions on the damping of the PDR. Calculations and experimental data are in good agreement in the degree of fragmentation and also in the integrated strength if the sensitivity limit of the experiments is taken into account

    Proposed determination of small level splittings in highly charged ions

    Get PDF

    Direct visualization of magnetic vortex pinning in superconductors

    Full text link
    We study the vortex structure in a Pb film deposited on top of a periodic array of ferromagnetic square microrings by combining two high resolution imaging techniques: Bitter decoration and scanning Hall probe microscopy (SHPM). The periodicity and strength of the magnetic pinning potential generated by the square microrings are controlled by the magnetic history of the template. When the square rings are in the magnetized dipolar state, known as the onion state, the strong stray field generated at the domain walls prevents the decoration of vortices. SHPM images show that the stray field generated by the dipoles is much stronger than the vortex field in agreement with the results of simulations. Real space vortex imaging has revealed that, in the onion state, the corners of the square rings act as effective pinning centers for vortices.Comment: To be published in Phys. Rev.

    Relativistic polarization analysis of Rayleigh scattering by atomic hydrogen

    Full text link
    A relativistic analysis of the polarization properties of light elastically scattered by atomic hydrogen is performed, based on the Dirac equation and second order perturbation theory. The relativistic atomic states used for the calculations are obtained by making use of the finite basis set method and expressed in terms of BB splines and BB polynomials. We introduce two experimental scenarios in which the light is circularly and linearly polarized, respectively. For each of these scenarios, the polarization-dependent angular distribution and the degrees of circular and linear polarization of the scattered light are investigated as a function of scattering angle and photon energy. Analytical expressions are derived for the polarization-dependent angular distribution which can be used for scattering by both hydrogenic as well as many-electron systems. Detailed computations are performed for Rayleigh scattering by atomic hydrogen within the incident photon energy range 0.5 to 10 keV. Particular attention is paid to the effects that arise from higher (nondipole) terms in the expansion of the electron-photon interaction.Comment: 8 pages, 5 figure
    • …
    corecore