13 research outputs found

    Insulin resistance and chronic kidney disease progression, cardiovascular events, and death: findings from the chronic renal insufficiency cohort study

    Full text link
    Abstract Background Insulin resistance contributes to the metabolic syndrome, which is associated with the development of kidney disease. However, it is unclear if insulin resistance independently contributes to an increased risk of chronic kidney disease (CKD) progression or CKD complications. Additionally, predisposing factors responsible for insulin resistance in the absence of diabetes in CKD are not well described. This study aimed to describe factors associated with insulin resistance and characterize the relationship of insulin resistance to CKD progression, cardiovascular events and death among a cohort of non-diabetics with CKD. Methods Data was utilized from Chronic Renal Insufficiency Cohort Study participants without diabetes (N = 1883). Linear regression was used to assess associations with insulin resistance, defined using the Homeostasis Model Assessment of Insulin Resistance (HOMA-IR). The relationship of HOMA-IR, fasting glucose, hemoglobin A1c (HbA1c), and C-peptide with CKD progression, cardiovascular events, and all-cause mortality was examined with Cox proportional hazards models. Results Novel positive associations with HOMA-IR included serum albumin, uric acid, and hemoglobin A1c. After adjustment, HOMA-IR was not associated with CKD progression, cardiovascular events, or all-cause mortality. There was a notable positive association of one standard deviation increase in HbA1c with the cardiovascular endpoint (HR 1.16, 95% CI: 1.00–1.34). Conclusion We describe potential determinants of HOMA-IR among a cohort of non-diabetics with mild-moderate CKD. HOMA-IR was not associated with renal or cardiovascular events, or all-cause mortality, which adds to the growing literature describing an inconsistent relationship of insulin resistance with CKD-related outcomes.https://deepblue.lib.umich.edu/bitstream/2027.42/148132/1/12882_2019_Article_1220.pd

    Improved functionalization of oleic acid-coated iron oxide nanoparticles for biomedical applications

    Get PDF
    Superparamagnetic iron oxide nanoparticles can providemultiple benefits for biomedical applications in aqueous environments such asmagnetic separation or magnetic resonance imaging. To increase the colloidal stability and allow subsequent reactions, the introduction of hydrophilic functional groups onto the particles’ surface is essential. During this process, the original coating is exchanged by preferably covalently bonded ligands such as trialkoxysilanes. The duration of the silane exchange reaction, which commonly takes more than 24 h, is an important drawback for this approach. In this paper, we present a novel method, which introduces ultrasonication as an energy source to dramatically accelerate this process, resulting in high-quality waterdispersible nanoparticles around 10 nmin size. To prove the generic character, different functional groups were introduced on the surface including polyethylene glycol chains, carboxylic acid, amine, and thiol groups. Their colloidal stability in various aqueous buffer solutions as well as human plasma and serum was investigated to allow implementation in biomedical and sensing applications.status: publishe

    Design and baseline characteristics of the finerenone in reducing cardiovascular mortality and morbidity in diabetic kidney disease trial

    Get PDF
    Background: Among people with diabetes, those with kidney disease have exceptionally high rates of cardiovascular (CV) morbidity and mortality and progression of their underlying kidney disease. Finerenone is a novel, nonsteroidal, selective mineralocorticoid receptor antagonist that has shown to reduce albuminuria in type 2 diabetes (T2D) patients with chronic kidney disease (CKD) while revealing only a low risk of hyperkalemia. However, the effect of finerenone on CV and renal outcomes has not yet been investigated in long-term trials. Patients and Methods: The Finerenone in Reducing CV Mortality and Morbidity in Diabetic Kidney Disease (FIGARO-DKD) trial aims to assess the efficacy and safety of finerenone compared to placebo at reducing clinically important CV and renal outcomes in T2D patients with CKD. FIGARO-DKD is a randomized, double-blind, placebo-controlled, parallel-group, event-driven trial running in 47 countries with an expected duration of approximately 6 years. FIGARO-DKD randomized 7,437 patients with an estimated glomerular filtration rate >= 25 mL/min/1.73 m(2) and albuminuria (urinary albumin-to-creatinine ratio >= 30 to <= 5,000 mg/g). The study has at least 90% power to detect a 20% reduction in the risk of the primary outcome (overall two-sided significance level alpha = 0.05), the composite of time to first occurrence of CV death, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for heart failure. Conclusions: FIGARO-DKD will determine whether an optimally treated cohort of T2D patients with CKD at high risk of CV and renal events will experience cardiorenal benefits with the addition of finerenone to their treatment regimen. Trial Registration: EudraCT number: 2015-000950-39; ClinicalTrials.gov identifier: NCT02545049

    Effect of short-term prednisone on beta-cell function in subjects with type 2 diabetes mellitus and healthy subjects.

    No full text
    OBJECTIVE:For those with type 2 diabetes mellitus (T2DM), impact of short-term high-dose glucocorticoid exposure on beta-cell function is unknown. This study aims to compare the impact on beta-cell function and insulin resistance of prednisone 40 mg between adults with newly diagnosed T2DM and healthy adults. METHODS:Five adults with T2DM and five healthy adults, all between 18-50 years, were enrolled. T2DM diagnosis was less than one year prior, HbA1c<75 mmol/mol (9.0%), with metformin treatment only. Pre- and post-therapy testing included 75-g oral glucose tolerance, plasma glucose, C-peptide, and insulin. Intervention therapy was prednisone 40mg daily for 3 days. RESULTS:Upon therapy completion, HOMA-IR did not increase or differ between groups. Percentile difference for HOMA-%B and insulinogenic index in those with T2DM was significantly lower statistically (50.4% and 69.2% respectively) compared to healthy subjects (19% and 32.2%). CONCLUSIONS:Contrary to the assumption that insulin resistance is the main driver of glucocorticoid-induced hyperglycemia, results indicate that decreased beta-cell insulin secretion is the more likely cause in those with T2DM. This is evidenced by significant drops in C-peptide AUC and HOMA-%B and increased glucose AUC in T2DM group only. These results may be caused by increased beta-cell fragility along with reduced recovery ability after glucocorticoid exposure. ClinicalTrials.gov NCT03661684
    corecore