102 research outputs found

    Cotranslational endoplasmic reticulum assembly of FcɛRI controls the formation of functional IgE-binding receptors

    Get PDF
    The human high affinity receptor for IgE (FcɛRI) is a cell surface structure critical for the pathology of allergic reactions. Human FcɛRI is expressed as a tetramer (αβγ2) on basophils or mast cells and as trimeric (αγ2) complex on antigen-presenting cells. Expression of the human α subunit can be down-regulated by a splice variant of FcɛRIβ (βvar). We demonstrate that FcɛRIα is the core subunit with which the other subunits assemble strictly cotranslationally. In addition to αβγ2 and αγ2, we demonstrate the presence of αβ and αβvarγ2 complexes that are stable in the detergent Brij 96. The role of individual FcɛRI subunits for the formation of functional, immunoglobulin E–binding FcɛRI complexes during endoplasmic reticulum (ER) assembly can be defined as follows: β and γ support ER insertion, signal peptide cleavage and proper N-glycosylation of α, whereas βvar allows accumulation of α protein backbone. We show that assembly of FcɛRI in the ER is a key step for the regulation of surface expression of FcɛRI. The ER quality control system thus regulates the quantity of functional FcɛRI, which in turn controls onset and persistence of allergic reactions

    Extended peptide-based inhibitors efficiently target the proteasome and reveal overlapping specificities of the catalytic β-subunits

    Get PDF
    AbstractBackground: The 26S proteasome is responsible for most cytosolic proteolysis, and is an important protease in major histocompatibility complex class I-mediated antigen presentation. Constitutively expressed proteasomes from mammalian sources possess three distinct catalytically active species, β1, β2 and β5, which are replaced in the γ-interferon-inducible immunoproteasome by a different set of catalytic subunits, β1i, β2i and β5i, respectively. Based on preferred cleavage of short fluorogenic peptide substrates, activities of the proteasome have been assigned to individual subunits and classified as ‘chymotryptic-like’ (β5), ‘tryptic-like’ (β2) and ‘peptidyl-glutamyl peptide hydrolyzing’ (β1). Studies with protein substrates indicate a far more complicated, less strict cleavage preference. We reasoned that inhibitors of extended size would give insight into the extent of overlapping substrate specificity of the individual activities and subunits.Results: A new class of proteasome inhibitors, considerably extended in comparison with the commonly used fluorescent substrates and peptide-based inhibitors, has been prepared. Application of the safety catch resin allowed the generation of the target compounds using a solid phase protocol. Evaluation of the new compounds revealed a set of highly potent proteasome inhibitors that target all individual active subunits with comparable affinity, unlike the other inhibitors described to date. Modification of the most active compound, adamantane-acetyl-(6-aminohexanoyl)3-(leucinyl)3-vinyl-(methyl)-sulfone (AdaAhx3L3VS), itself capable of proteasome inhibition in living cells, afforded a new set of radio- and affinity labels.Conclusions: N-terminal extension of peptide vinyl sulfones has a profound influence on both their efficiency and selectivity as proteasome inhibitors. Such extensions greatly enhance inhibition and largely obliterate selectivity towards the individual catalytic activities. We conclude that for the interaction with larger substrates, there appears to be less discrimination of different substrate sequences for the catalytic activities than is normally assumed based on the use of small peptide-based substrates and inhibitors. The compounds described here are readily accessible synthetically, and are more potent inhibitors in living cells than their shorter peptide vinyl sulfone counterparts

    Screen for ISG15-crossreactive deubiquitinases

    Get PDF
    Background. The family of ubiquitin-like molecules (UbLs) comprises several members, each of which has sequence, structural, or functional similarity to ubiquitin. ISG15 is a homolog of ubiquitin in vertebrates and is strongly upregulated following induction by type I interferon. ISG15 can be covalently attached to proteins, analogous to ubiquitination and with actual support of ubiquitin conjugating factors. Specific proteases are able to reverse modification with ubiquitin or UbLs by hydrolyzing the covalent bond between their C-termini and substrate proteins. The tail regions of ubiquitin and ISG15 are identical and we therefore hypothesized that promiscuous deubiquitinating proteases (DUBs) might exist, capable of recognizing both ubiquitin and ISG15. Results. We have cloned and expressed 22 human DUBs, representing the major clades of the USP protease family. Utilizing suicide inhibitors based on ubiquitin and ISG15, we have identified USP2, USP5 (IsoT1), USP13 (IsoT3), and USP14 as ISG15-reactive proteases, in addition to the bona fide ISG15-specific protease USP18 (UBP43). USP14 is a proteasome-associated DUB, and its ISG15 isopeptidase activity increases when complexed with the proteasome. Conclusions. By evolutionary standards, ISG15 is a newcomer among the UbLs and it apparently not only utilizes the conjugating but also the deconjugating machinery of its more established relative ubiquitin. Functional overlap between these two posttranslational modifiers might therefore be more extensive than previously appreciated and explain the rather innocuous phenotype of ISG15 null mice. Citation: Catic A, Fiebiger E, Korbel GA, Blom D, Galardy PJ, et al (2007) Screen for ISG15-crossreactive Deubiquitinases. PLoS ONE 2(7): e679

    Analysis of Protease Activity in Live Antigen-presenting Cells Shows Regulation of the Phagosomal Proteolytic Contents During Dendritic Cell Activation

    Get PDF
    Here, we describe a new approach designed to monitor the proteolytic activity of maturing phagosomes in live antigen-presenting cells. We find that an ingested particle sequentially encounters distinct protease activities during phagosomal maturation. Incorporation of active proteases into the phagosome of the macrophage cell line J774 indicates that phagosome maturation involves progressive fusion with early and late endocytic compartments. In contrast, phagosome biogenesis in bone marrow–derived dendritic cells (DCs) and macrophages preferentially involves endocytic compartments enriched in cathepsin S. Kinetics of phagosomal maturation is faster in macrophages than in DCs. Furthermore, the delivery of active proteases to the phagosome is significantly reduced after the activation of DCs with lipopolysaccharide. This observation is in agreement with the notion that DCs prevent the premature destruction of antigenic determinants to optimize T cell activation. Phagosomal maturation is therefore a tightly regulated process that varies according to the type and differentiation stage of the phagocyte

    Invariant Chain Controls the Activity of Extracellular Cathepsin L

    Get PDF
    Secretion of proteases is critical for degradation of the extracellular matrix during an inflammatory response. Cathepsin (Cat) S and L are the major elastinolytic cysteine proteases in mouse macrophages. A 65 amino acid segment of the p41 splice variant (p4165aa) of major histocompatibility complex class II–associated invariant chain (Ii) binds to the active site of CatL and permits the maintenance of a pool of mature enzyme in endosomal compartments of macro-phages and dendritic cells (DCs). Here we show that interaction of p4165aa with mature CatL allows extracellular accumulation of the active enzyme. We detected mature CatL as a complex with p4165aa in culture supernatants from antigen-presenting cells (APCs). Extracellular accumulation of mature CatL is up-regulated by inflammatory stimuli as observed in interferon (IFN)-γ–treated macrophages and lipopolysaccharide (LPS)-activated DCs. Despite the neutral pH of the extracellular milieu, released CatL associated with p4165aa is catalytically active as demonstrated by active site labeling and elastin degradation assays. We propose that p4165aa stabilizes CatL in the extracellular environment and induces a local increase in the concentration of matrix-degrading enzymes during inflammation. Through its interaction with CatL, Ii may therefore control the migratory response of APCs and/or the recruitment of effectors of the inflammatory response

    A Distinct Esophageal mRNA Pattern Identifies Eosinophilic Esophagitis Patients With Food Impactions

    Get PDF
    Eosinophilic esophagitis (EoE), a Th2-type allergic immune disorder characterized by an eosinophil-rich esophageal immune infiltrate, is often associated with food impaction (FI) in pediatric patients but the molecular mechanisms underlying the development of this complication are not well understood. We aim to identify molecular pathways involved in the development of FI. Due to large variations in disease presentation, our analysis was further geared to find markers capable of distinguishing EoE patients that are prone to develop food impactions and thus expand an established medical algorithm for EoE by developing a secondary analysis that allows for the identification of patients with food impactions as a distinct patient population. To this end, mRNA patterns from esophageal biopsies of pediatric EoE patients presenting with and without food impactions were compared and machine learning techniques were employed to establish a diagnostic probability score to identify patients with food impactions (EoE+FI). Our analysis showed that EoE patients with food impaction were indistinguishable from other EoE patients based on their tissue eosinophil count, serum IgE levels, or the mRNA transcriptome-based p(EoE). Irrespectively, an additional analysis loop of the medical algorithm was able to separate EoE+FI patients and a composite FI-score was established that identified such patients with a sensitivity of 93% and a specificity of 100%. The esophageal mRNA pattern of EoE+FI patients was typified by lower expression levels of mast cell markers and Th2 associated transcripts, such as FCERIB, CPA3, CCL2, IL4, and IL5. Furthermore, lower expression levels of regulators of esophageal motility (NOS2 and HIF1A) were detected in EoE+FI. The EoE+FI -specific mRNA pattern indicates that impaired motility may be one underlying factor for the development of food impactions in pediatric patients. The availability of improved diagnostic tools such as a medical algorithm for EoE subpopulations will have a direct impact on clinical practice because such strategies can identify molecular inflammatory characteristics of individual EoE patients, which, in turn, will facilitate the development of individualized therapeutic approaches that target the relevant pathways affected in each patient
    • …
    corecore