1,083 research outputs found

    Finite size effects at phase transition in compact U(1) gauge theory

    Get PDF
    We present and discuss the results of a Monte-Carlo simulation of the phase transition in pure compact U(1) lattice gauge theory with Wilson action on a hypercubic lattice with periodic boundary conditions. The statistics are large enough to make a thorough analysis of the size dependence of the gap. In particular we find a non-zero latent heat in the infinite volume limit. We also find that the critical exponents ν\nu and α\alpha are consistent with the hyperscaling relation but confirm that the critical behavior is different from a conventional first-order transition.Comment: Talk presented at Lattice '97; 3 pages, Latex fil

    Critical behaviour of SU(2) lattice gauge theory. A complete analysis with the χ2\chi^2-method

    Full text link
    We determine the critical point and the ratios β/ν\beta/\nu and γ/ν\gamma/\nu of critical exponents of the deconfinement transition in SU(2)SU(2) gauge theory by applying the χ2\chi^2-method to Monte Carlo data of the modulus and the square of the Polyakov loop. With the same technique we find from the Binder cumulant grg_r its universal value at the critical point in the thermodynamical limit to 1.403(16)-1.403(16) and for the next-to-leading exponent ω=1±0.1\omega=1\pm0.1. From the derivatives of the Polyakov loop dependent quantities we estimate then 1/ν1/\nu. The result from the derivative of grg_r is 1/ν=0.63±0.011/\nu=0.63\pm0.01, in complete agreement with that of the 3d3d Ising model.Comment: 11 pages, 3 Postscript figures, uses Plain Te

    Non-perturbative determination of anisotropy coefficients and pressure gap at the deconfining transition of QCD

    Get PDF
    We propose a new non-perturbative method to compute derivatives of gauge coupling constants with respect to anisotropic lattice spacings (anisotropy coefficients). Our method is based on a precise measurement of the finite temperature deconfining transition curve in the lattice coupling parameter space extended to anisotropic lattices by applying the spectral density method. We determine the anisotropy coefficients for the cases of SU(2) and SU(3) gauge theories. A longstanding problem, when one uses the perturbative anisotropy coefficients, is a non-vanishing pressure gap at the deconfining transition point in the SU(3) gauge theory. Using our non-perturbative anisotropy coefficients, we find that this problem is completely resolved.Comment: LATTICE98(hightemp

    Atomization and mixing study

    Get PDF
    The state of the art in atomization and mixing for triplet, pentad, and coaxial injectors is described. Injectors that are applicable for LOX/hydrocarbon propellants and main chamber and fuel rich preburner/gas generator mixture ratios are of special interest. Various applicable correlating equations and parameters as well as test data found in the literature are presented. The validity, utility, and important aspects of these data and correlations are discussed and the measurement techniques used are evaluated. Propellant mixing tests performed are described and summarized, results are reported, and tentative conclusions are included

    Strong Coupling Lattice Schwinger Model on Large Spherelike Lattices

    Get PDF
    The lattice regularized Schwinger model for one fermion flavor and in the strong coupling limit is studied through its equivalent representation as a restricted 8-vertex model. The Monte Carlo simulation on lattices with torus-topology is handicapped by a severe non-ergodicity of the updating algorithm; introducing lattices with spherelike topology avoids this problem. We present a large scale study leading to the identification of a critical point with critical exponent ν=1\nu=1, in the universality class of the Ising model or, equivalently, the lattice model of free fermions.Comment: 16 pages + 7 figures, gzipped POSTSCRIPT fil

    Finite-Size Scaling Study of the Three-Dimensional Classical Heisenberg Model

    Full text link
    We use the single-cluster Monte Carlo update algorithm to simulate the three-dimensional classical Heisenberg model in the critical region on simple cubic lattices of size L3L^3 with L=12,16,20,24,32,40L=12, 16, 20, 24, 32, 40, and 4848. By means of finite-size scaling analyses we compute high-precision estimates of the critical temperature and the critical exponents, using extensively histogram reweighting and optimization techniques. Measurements of the autocorrelation time show the expected reduction of critical slowing down at the phase transition. This allows simulations on significantly larger lattices than in previous studies and consequently a better control over systematic errors in finite-size scaling analyses.Comment: 9 pages, FUB-HEP 9/92, HLRZ Preprint 56/92, August 199

    Generalized-ensemble simulations of spin systems and protein systems

    Full text link
    In complex systems such as spin systems and protein systems, conventional simulations in the canonical ensemble will get trapped in states of energy local minima. We employ the generalized-ensemble algorithms in order to overcome this multiple-minima problem. Three well-known generalized-ensemble algorithms, namely, multicanonical algorithm, simulated tempering, and replica-exchange method, are described. We then present three new generalized-ensemble algorithms based on the combinations of the three methods. Effectiveness of the new methods are tested with a Potts model and protein systems.Comment: 12 pages, (LaTeX2e), 6 figures, Computer Physics Communications, in pres
    corecore