136 research outputs found

    On the reliability of polarization estimation using Rotation Measure Synthesis

    Get PDF
    We benchmark the reliability of the Rotation Measure (RM) synthesis algorithm using the 1005 Centaurus A field sources of Feain et al. (2009). The RM synthesis solutions are compared with estimates of the polarization parameters using traditional methods. This analysis provides verification of the reliability of RM synthesis estimates. We show that estimates of the polarization parameters can be made at lower S/N if the range of RMs is bounded, but reliable estimates of individual sources with unusual RMs require unconstrainted solutions and higher S/N. We derive from first principles the statistical properties of the polarization amplitude associated with RM synthesis in the presence of noise. The amplitude distribution depends explicitly on the amplitude of the underlying (intrinsic) polarization signal. Hence it is necessary to model the underlying polarization signal distribution in order to estimate the reliability and errors in polarization parameter estimates. We introduce a Bayesian method to derive the distribution of intrinsic amplitudes based on the distribution of measured amplitudes. The theoretically-derived distribution is compared with the empirical data to provide quantitative estimates of the probability that an RM synthesis solution is correct as a function of S/N. We provide quantitative estimates of the probability that any given RM synthesis solution is correct as a function of measured polarized amplitude and the intrinsic polarization amplitude compared to the noise.Comment: accepted for publication in the Astrophysical Journa

    The Centaurus A Ultrahigh-Energy Cosmic Ray Excess and the Local Extragalactic Magnetic Field

    Get PDF
    The ultrahigh-energy cosmic-ray anisotropies discovered by the Pierre Auger Observatory give the potential to finally address both the particles' origins and properties of the nearby extragalactic magnetic field (EGMF). We examine the implications of the excess of ~ 10^20 eV events around the nearby radio galaxy Centaurus A. We find that, if Cen A is the source of these cosmic rays, the angular distribution of events constrains the EGMF strength within several Mpc of the Milky Way to > 20 nG for an assumed primary proton composition. Our conclusions suggest that either the observed excess is a statistical anomaly or the local EGMF is stronger then conventionally thought. We discuss the implications of this field, including UHECR scattering from more distant sources, time delays from transient sources, and the possibility of using magnetic lensing signatures to attain tighter constraints.Comment: 8 pages, 8 figures; Matches published version in AP

    Star-Formation in the Ultraluminous Infrared Galaxy F00183-7111

    Get PDF
    We report the detection of molecular CO(1-0) gas in F00183-7111, one of the most extreme Ultra-Luminous Infrared Galaxies known, with the Australia Telescope Compact Array. We measure a redshift of 0.3292 for F00183-7111 from the CO(1-0) line and estimate the mass of the molecular gas in 00183 to be 1 ×\times 1010^{10} M⊙_{\odot}. We find that F00183-7111 is predominately powered by the AGN and only ∼\sim14 per cent of the total luminosity is contributed by star-formation (SFR ∼\sim220 M⊙_{\odot} yr−1^{-1}). We also present an optical image of F00183-7111, which shows an extension to the East. We searched for star-formation in this extension using radio continuum observations but do not detect any. This suggests that the star-formation is likely to be predominately nuclear. These observations provide additional support for a model in which the radio emission from ULIRGs is powered by an intense burst of star-formation and by a radio-loud AGN embedded in its nucleus, both triggered by a merger of gas-rich galaxies.Comment: 5 pages, 2 figures, Accepted for publication in MNRAS Letters Accepted 2014 January 19. Received 2013 December 30; in original form 2013 November 2

    Broadband radio polarimetry and Faraday rotation of 563 extragalactic radio sources

    Get PDF
    We present a broadband spectropolarimetric survey of 563 discrete, mostly unresolved radio sources between 1.3 and 2.0 GHz using data taken with the Australia Telescope Compact Array. We have used rotation-measure synthesis to identify Faraday-complex polarized sources, those objects whose frequency-dependent polarization behavior indicates the presence of material possessing complicated magnetoionic structure along the line of sight (LOS). For sources classified as Faraday-complex, we have analyzed a number of their radio and multiwavelength properties to determine whether they differ from Faraday-simple polarized sources (sources for which LOS magnetoionic structures are comparatively simple) in these properties. We use this information to constrain the physical nature of the magnetoionic structures responsible for generating the observed complexity. We detect Faraday complexity in 12% of polarized sources at ~1' resolution, but we demonstrate that underlying signal-to-noise limitations mean the true percentage is likely to be significantly higher in the polarized radio source population. We find that the properties of Faraday-complex objects are diverse, but that complexity is most often associated with depolarization of extended radio sources possessing a relatively steep total intensity spectrum. We find an association between Faraday complexity and LOS structure in the Galactic interstellar medium (ISM) and claim that a significant proportion of the Faraday complexity we observe may be generated at interfaces of the ISM associated with ionization fronts near neutral hydrogen structures. Galaxy cluster environments and internally generated Faraday complexity provide possible alternative explanations in some cases

    Innovations in Radiotherapy Technology.

    Get PDF
    Many low- and middle-income countries, together with remote and low socioeconomic populations within high-income countries, lack the resources and services to deal with cancer. The challenges in upgrading or introducing the necessary services are enormous, from screening and diagnosis to radiotherapy planning/treatment and quality assurance. There are severe shortages not only in equipment, but also in the capacity to train, recruit and retain staff as well as in their ongoing professional development via effective international peer-review and collaboration. Here we describe some examples of emerging technology innovations based on real-time software and cloud-based capabilities that have the potential to redress some of these areas. These include: (i) automatic treatment planning to reduce physics staffing shortages, (ii) real-time image-guided adaptive radiotherapy technologies, (iii) fixed-beam radiotherapy treatment units that use patient (rather than gantry) rotation to reduce infrastructure costs and staff-to-patient ratios, (iv) cloud-based infrastructure programmes to facilitate international collaboration and quality assurance and (v) high dose rate mobile cobalt brachytherapy techniques for intraoperative radiotherapy
    • …
    corecore