3,892 research outputs found

    A classical bounce: constraints and consequences

    Full text link
    We perform a detailed investigation of the simplest possible cosmological model in which a bounce can occur, namely that where the dynamics is led by a simple massive scalar field in a general self-interacting potential and a background spacetime with positively curved spatial sections. By means of a phase space analysis, we give the conditions under which an initially contracting phase can be followed by a bounce and an inflationary phase lasting long enough (i.e., at least 60-70 e-folds) to suppress spatial curvature in today's observable universe. We find that, quite generically, this realization requires some amount of fine-tuning of the initial conditions. We study the effect of this background evolution on scalar perturbations by propagating an initial power-law power spectrum through the contracting phase, the bounce and the inflationary phase. We find that it is drastically modified, both spectrally (k-mode mixing) and in amplitude. It also acquires, at leading order, an oscillatory component, which, once evolved through the radiation and matter dominated eras, happens to be compatible with the WMAP data.Comment: Updated references, improved figure resolutio

    A Holistic Approach to Log Data Analysis in High-Performance Computing Systems: The Case of IBM Blue Gene/Q

    Get PDF
    The complexity and cost of managing high-performance computing infrastructures are on the rise. Automating management and repair through predictive models to minimize human interventions is an attempt to increase system availability and contain these costs. Building predictive models that are accurate enough to be useful in automatic management cannot be based on restricted log data from subsystems but requires a holistic approach to data analysis from disparate sources. Here we provide a detailed multi-scale characterization study based on four datasets reporting power consumption, temperature, workload, and hardware/software events for an IBM Blue Gene/Q installation. We show that the system runs a rich parallel workload, with low correlation among its components in terms of temperature and power, but higher correlation in terms of events. As expected, power and temperature correlate strongly, while events display negative correlations with load and power. Power and workload show moderate correlations, and only at the scale of components. The aim of the study is a systematic, integrated characterization of the computing infrastructure and discovery of correlation sources and levels to serve as basis for future predictive modeling efforts.Comment: 12 pages, 7 Figure
    corecore