17 research outputs found

    Repeated freeze–thaw cycles reduce the survival rate of osteocytes in bone-tendon constructs without affecting the mechanical properties of tendons

    Get PDF
    Frozen bone-patellar tendon bone allografts are useful in anterior cruciate ligament reconstruction as the freezing procedure kills tissue cells, thereby reducing immunogenicity of the grafts. However, a small portion of cells in human femoral heads treated by standard bone-bank freezing procedures survive, thus limiting the effectiveness of allografts. Here, we characterized the survival rates and mechanisms of cells isolated from rat bones and tendons that were subjected to freeze–thaw treatments, and evaluated the influence of these treatments on the mechanical properties of tendons. After a single freeze–thaw cycle, most cells isolated from frozen bone appeared morphologically as osteocytes and expressed both osteoblast- and osteocyte-related genes. Transmission electron microscopic observation of frozen cells using freeze-substitution revealed that a small number of osteocytes maintained large nuclei with intact double membranes, indicating that these osteocytes in bone matrix were resistant to ice crystal formation. We found that tendon cells were completely killed by a single freeze–thaw cycle, whereas bone cells exhibited a relatively high survival rate, although survival was significantly reduced after three freeze–thaw cycles. In patella tendons, the ultimate stress, Young’s modulus, and strain at failure showed no significant differences between untreated tendons and those subjected to five freeze–thaw cycles. In conclusion, we identified that cells surviving after freeze–thaw treatment of rat bones were predominantly osteocytes. We propose that repeated freeze–thaw cycles could be applied for processing bone-tendon constructs prior to grafting as the treatment did not affect the mechanical property of tendons and drastically reduced surviving osteocytes, thereby potentially decreasing allograft immunogenecity

    B-cell lymphoma in retrieved femoral heads: a long term follow up

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A relatively high incidence of pathological conditions in retrieved femoral heads, including a group of patients having low grade B-cell lymphoma, has been described before. At short term follow up none of these patients with low-grade B-cell lymphoma showed evidence of systemic disease. However, the long term follow up of these patients is not known.</p> <p>Methods</p> <p>From November 1994 up to and including December 2005 we screened all femoral heads removed at the time of primary total hip replacement histopathologically and included them in the bone banking protocol according to the guidelines of the American Associations of Tissue Banks (AATB) and the European Association of Musculo-Skeletal Transplantation (EAMST). We determined the percentage of B-cell lymphoma in all femoral heads and in the group that fulfilled all criteria of the bone banking protocol and report on the long-term follow-up.</p> <p>Results</p> <p>Of 852 femoral heads fourteen (1.6%) were highly suspicious for low-grade B-cell lymphoma. Of these 852 femoral heads, 504 were eligible for bone transplantation according to the guidelines of the AATB and the EAMST. Six femoral heads of this group of 504 were highly suspicious for low-grade B-cell lymphoma (1.2%). At long term follow up two (0.2%) of all patients developed systemic malignant disease and one of them needed medical treatment for her condition.</p> <p>Conclusion</p> <p>In routine histopathological screening we found variable numbers of low-grade B-cell lymphoma throughout the years, even in a group of femoral heads that were eligible for bone transplantation. Allogenic transmission of malignancy has not yet been reported on, but surviving viruses are proven to be transmissible. Therefore, we recommend the routine histopathological evaluation of all femoral heads removed at primary total hip arthroplasty as a tool for quality control, whether the femoral head is used for bone banking or not.</p

    Generation of a reference transcriptome for evaluating rainbow trout responses to various stressors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Fish under intensive culture conditions are exposed to a variety of acute and chronic stressors, including high rearing densities, sub-optimal water quality, and severe thermal fluctuations. Such stressors are inherent in aquaculture production and can induce physiological responses with adverse effects on traits important to producers and consumers, including those associated with growth, nutrition, reproduction, immune response, and fillet quality. Understanding and monitoring the biological mechanisms underlying stress responses will facilitate alleviating their negative effects through selective breeding and changes in management practices, resulting in improved animal welfare and production efficiency.</p> <p>Results</p> <p>Physiological responses to five treatments associated with stress were characterized by measuring plasma lysozyme activity, glucose, lactate, chloride, and cortisol concentrations, in addition to stress-associated transcripts by quantitative PCR. Results indicate that the fish had significant stressor-specific changes in their physiological conditions. Sequencing of a pooled normalized transcriptome library created from gill, brain, liver, spleen, kidney and muscle RNA of control and stressed fish produced 3,160,306 expressed sequence tags which were assembled and annotated. SNP discovery resulted in identification of ~58,000 putative single nucleotide polymorphisms including 24,479 which were predicted to fall within exons. Of these, 4907 were predicted to occupy the first position of a codon and 4110 the second, increasing the probability to impact amino acid sequence variation and potentially gene function.</p> <p>Conclusion</p> <p>We have generated and characterized a reference transcriptome for rainbow trout that represents multiple tissues responding to multiple stressors common to aquaculture production environments. This resource compliments existing public transcriptome data and will facilitate approaches aiming to evaluate gene expression associated with stress in this species.</p

    The effect of mechanical loading on osteogenesis of human dental pulp stromal cells in a novel in vitro model

    Get PDF
    Tooth loss often results in alveolar bone resorption because of lack of mechanical stimulation. Thus, the mechanism of mechanical loading on stem cell osteogenesis is crucial for alveolar bone regeneration. We have investigated the effect of mechanical loading on osteogenesis in human dental pulp stromal cells (hDPSCs) in a novel in vitro model. Briefly, 1 × 107 hDPSCs were seeded into 1 ml 3 % agarose gel in a 48-well-plate. A loading tube was then placed in the middle of the gel to mimic tooth-chewing movement (1 Hz, 3 × 30 min per day, n = 3). A non-loading group was used as a control. At various time points, the distribution of live/dead cells within the gel was confirmed by fluorescence markers and confocal microscopy. The correlation and interaction between the factors (e.g. force, time, depth and distance) were statistically analysed. The samples were processed for histology and immunohistochemistry. After 1-3 weeks of culture in the in-house-designed in vitro bioreactor, fluorescence imaging confirmed that additional mechanical loading increased the viable cell numbers over time as compared with the control. Cells of various phenotypes formed different patterns away from the reaction tube. The cells in the middle part of the gel showed enhanced alkaline phosphatase staining at week 1 but reduced staining at weeks 2 and 3. Additional loading enhanced Sirius Red and type I collagen staining compared with the control. We have thus successfully developed a novel in-house-designed in vitro bioreactor mimicking the biting force to enhance hDPSC osteogenesis in an agarose scaffold and to promote bone formation and/or prevent bone resorption

    Lrp5 Is Not Required for the Proliferative Response of Osteoblasts to Strain but Regulates Proliferation and Apoptosis in a Cell Autonomous Manner

    Get PDF
    Although Lrp5 is known to be an important contributor to the mechanisms regulating bone mass, its precise role remains unclear. The aim of this study was to establish whether mutations in Lrp5 are associated with differences in the growth and/or apoptosis of osteoblast-like cells and their proliferative response to mechanical strain in vitro. Primary osteoblast-like cells were derived from cortical bone of adult mice lacking functional Lrp5 (Lrp5−/−), those heterozygous for the human G171V High Bone Mass (HBM) mutation (LRP5G171V) and their WT littermates (WTLrp5, WTHBM). Osteoblast proliferation over time was significantly higher in cultures of cells from LRP5G171V mice compared to their WTHBM littermates, and lower in Lrp5−/− cells. Cells from female LRP5G171V mice grew more rapidly than those from males, whereas cells from female Lrp5−/− mice grew more slowly than those from males. Apoptosis induced by serum withdrawal was significantly higher in cultures from Lrp5−/− mice than in those from WTHBM or LRP5G171V mice. Exposure to a single short period of dynamic mechanical strain was associated with a significant increase in cell number but this response was unaffected by genotype which also did not change the ‘threshold’ at which cells responded to strain. In conclusion, the data presented here suggest that Lrp5 loss and gain of function mutations result in cell-autonomous alterations in osteoblast proliferation and apoptosis but do not alter the proliferative response of osteoblasts to mechanical strain in vitro

    Periprosthetic strain magnitude-dependent upregulation of type I collagen synthesis in human osteoblasts through an ERK1/2 pathway

    No full text
    Human osteoblasts sense mechanical stimulation and synthesise type I collagen in periprosthetic osseointegration following total hip arthroplasty. However, the regulation of type I collagen synthesis by periprosthetic strain is unclear because the cellular-level strain magnitude remains unknown to date. Fortunately, the tissue-level strain in implanted femurs is measurable. According to the mechanism of strain amplification, the tissue-level strain was amplified 20 times to stretch human osteoblasts in this study. Elongation of 0.8–3.2% enhanced the mRNA level of type I collagen, whereas the release of procollagen type I C propeptide only increased at 2.4% and 3.2% elongation. Type I collagen expression increased with the activation of ERK1/2 phosphorylation in a strain-magnitude-dependent manner, whereas JNK and P38 were unaffected. The responses were completely inhibited by blocking the ERK1/2 pathway with U0126. The results indicate that type I collagen synthesis in human osteoblasts depends on the level of periprosthetic strain and ERK1/2 activation
    corecore