150 research outputs found

    Agent-Based Modeling of a Non-tâtonnement Process for the Scarf Economy: The Role of Learning

    Get PDF
    In this paper, we propose a meta-learning model to hierarchically integrate individual learning and social learning schemes. This meta-learning model is incorporated into an agent-based model to show that Herbert Scarf’s famous counterexample on Walrasian stability can become stable in some cases under a non-tâtonnement process when both learning schemes are involved, a result previously obtained by Herbert Gintis. However, we find that the stability of the competitive equilibrium depends on how individuals learn—whether they are innovators (individual learners) or imitators (social learners), and their switching frequency (mobility) between the two. We show that this endogenous behavior, apart from the initial population of innovators, is mainly determined by the agents’ intensity of choice. This study grounds the Walrasian competitive equilibrium based on the view of a balanced resource allocation between exploitation and exploration. This balance, achieved through a meta-learning model, is shown to be underpinned by a behavioral/psychological characteristic

    Pre-attentive processing in children with early and continuously-treated PKU. Effects of concurrent Phe level and lifetime dietary control

    Get PDF
    Sixty-four children, aged 7 to 14 years, with early-treated PKU, were compared with control children on visual evoked potential (VEP) amplitudes and latencies and auditory mismatch negativity (MMN) amplitudes. It was further investigated whether indices of dietary control would be associated with these evoked potentials parameters. There were no significant differences between controls and children with PKU in VEP- and MMN-indices. However, higher lifetime Phe levels were, in varying degree and stronger than concurrent Phe level, related to increased N75 amplitudes, suggesting abnormalities in attention, and longer P110 latencies, indicating a reduction in speed of neural processing, possibly due to deficits in myelination or reduced dopamine levels in brain and retina. Similarly, higher lifetime Phe levels and Index of Dietary Control (IDC) were associated with decreased MMN amplitudes, suggesting a reduced ability to respond to stimulus change and poorer triggering of the frontally mediated attention switch. In summary, the present study in children with PKU investigated bottom-up information processing, i.e., triggered by external events, a fundamental prerequisite for the individual’s responsiveness to the outside world. Results provide evidence that quality of dietary control may affect the optimal development of these pre-attentive processes, and suggest the existence of windows of vulnerability to Phe exposure

    Rapid quantification of underivatized amino acids in plasma by hydrophilic interaction liquid chromatography (HILIC) coupled with tandem mass-spectrometry

    Full text link
    Background: Amino acidopathies are a class of inborn errors of metabolism (IEM) that can be diagnosed by analysis of amino acids (AA) in plasma. Current strategies for AA analysis include cation exchange HPLC with post-column ninhydrin derivatization, GC-MS, and LC-MS/MS-related methods. Major drawbacks of the current methods are time-consuming procedures, derivative problems, problems with retention, and MS-sensitivity. The use of hydrophilic interaction liquid chromatography (HILIC) columns is an ideal separation mode for hydrophilic compounds like AA. Here we report a HILIC-method for analysis of 36 underivatized AA in plasma to detect defects in AA metabolism that overcomes the major drawbacks of other methods. Methods: A rapid, sensitive, and specific method was developed for the analysis of AA in plasma without derivatization using HILIC coupled with tandem mass-spectrometry (Xevo TQ, Waters). Results: Excellent separation of 36 AA (24 quantitative/12 qualitative) in plasma was achieved on an Acquity BEH Amide column (2.1×100 mm, 1.7 μm) in a single MS run of 18 min. Plasma of patients with a known IEM in AA metabolism was analyzed and all patients were correctly identified. Conclusion: The reported method analyzes 36 AA in plasma within 18 min and provides baseline separation of isomeric AA such as leucine and isoleucine. No separation was obtained for isoleucine and allo-isoleucine. The method is applicable to study defects in AA metabolism in plasma
    • …
    corecore