227 research outputs found

    Modulating Image Restoration with Continual Levels via Adaptive Feature Modification Layers

    Full text link
    In image restoration tasks, like denoising and super resolution, continual modulation of restoration levels is of great importance for real-world applications, but has failed most of existing deep learning based image restoration methods. Learning from discrete and fixed restoration levels, deep models cannot be easily generalized to data of continuous and unseen levels. This topic is rarely touched in literature, due to the difficulty of modulating well-trained models with certain hyper-parameters. We make a step forward by proposing a unified CNN framework that consists of few additional parameters than a single-level model yet could handle arbitrary restoration levels between a start and an end level. The additional module, namely AdaFM layer, performs channel-wise feature modification, and can adapt a model to another restoration level with high accuracy. By simply tweaking an interpolation coefficient, the intermediate model - AdaFM-Net could generate smooth and continuous restoration effects without artifacts. Extensive experiments on three image restoration tasks demonstrate the effectiveness of both model training and modulation testing. Besides, we carefully investigate the properties of AdaFM layers, providing a detailed guidance on the usage of the proposed method.Comment: Accepted by CVPR 2019 (oral); code is available: https://github.com/hejingwenhejingwen/AdaF

    Plasmonic Nanoantenna Array Design

    Get PDF
    Recently, wireless optical communication system is developing toward the chip level. Optical nanoantenna array in optical communication system is the key component for radiating and receiving light. In this chapter, we propose a sub-wavelength plasmonic nanoantenna with high gain operating at the standard optical communication wavelength of 1550 nm. The designed plasmonic antenna has a good matching with the silicon waveguide in a wide band, and light is fed from the bottom of the nanoantenna via the silicon waveguide. Furthermore, we design two kinds of antenna arrays with the proposed plasmonic nanoantenna, including one- and two-dimensional arrays (1 × 8 and 8 × 8). The radiation characteristics of the antenna arrays are investigated and both arrays have high gains and wide beam steering range without grating lobes

    Optimization of “Deoxidation Alloying” Batching Scheme

    Get PDF
    In this paper, a mathematical model was established to predict the deoxidation alloying and to optimize the type and quantity of input alloys. Firstly, the GCA method was used to obtain the main factors affecting the alloy yield of carbon and manganese based on the historical data. Secondly, the alloy yield was predicted by the stepwise MRA, the BP neural network and the regression SVM models, respectively. The conclusion is that the regression SVM model has the highest prediction accuracy and the maximum deviation between the test set prediction result and the real value was only 0.0682 and 0.0554. Thirdly, in order to reduce the manufacturer's production cost, the genetic algorithm was used to calculate the production cost mathematical programming model. Finally, sensitivity analysis was performed on the prediction model and the cost optimization model. The unit price of 20% of the alloy raw materials was increased by 20%, and the total cost change rate was 0.7155%, the lowest was -0.4297%, which proved that the mathematical model established presented strong robustness and could be certain reference value for the current production of iron and steel enterprises

    DiffBIR: Towards Blind Image Restoration with Generative Diffusion Prior

    Full text link
    We present DiffBIR, which leverages pretrained text-to-image diffusion models for blind image restoration problem. Our framework adopts a two-stage pipeline. In the first stage, we pretrain a restoration module across diversified degradations to improve generalization capability in real-world scenarios. The second stage leverages the generative ability of latent diffusion models, to achieve realistic image restoration. Specifically, we introduce an injective modulation sub-network -- LAControlNet for finetuning, while the pre-trained Stable Diffusion is to maintain its generative ability. Finally, we introduce a controllable module that allows users to balance quality and fidelity by introducing the latent image guidance in the denoising process during inference. Extensive experiments have demonstrated its superiority over state-of-the-art approaches for both blind image super-resolution and blind face restoration tasks on synthetic and real-world datasets. The code is available at https://github.com/XPixelGroup/DiffBIR

    BeamSearchQA: Large Language Models are Strong Zero-Shot QA Solver

    Full text link
    Open-domain question answering is a crucial task that often requires accessing external information. Existing methods typically adopt a single-turn retrieve-then-read approach, where relevant documents are first retrieved, and questions are then answered based on the retrieved information. However, there are cases where answering a question requires implicit knowledge that is not directly retrievable from the question itself. In this work, we propose a novel question-answering pipeline called BeamSearchQA. Our approach leverages large language models to iteratively generate new questions about the original question, enabling an iterative reasoning process. By iteratively refining and expanding the scope of the question, our method aims to capture and utilize hidden knowledge that may not be directly obtainable through retrieval. We evaluate our approach on the widely-used open-domain NQ and WebQ datasets. The experimental results demonstrate that BeamSearchQA significantly outperforms other zero-shot baselines, indicating its effectiveness in tackling the challenges of open-domain question answering.Comment: Work in progres
    • …
    corecore