115 research outputs found

    Solitons and Black Holes in a Generalized Skyrme Model with Dilaton-Quarkonium field

    Full text link
    Skyrme theory is among the viable effective theories which emerge from low-energy limit of quantum chromodynamics. Many of its generalizations include also a dilaton. Here we find new self-gravitating solutions, both solitons and black holes, in a Generalized Skyrme Model (GSM) in which a dilaton is present. The investigation of the properties of the solutions is done numerically. We find that the introduction of the dilaton in the theory does not change the picture qualitatively, only quantitatively. The model considered here has one free parameter more than the Einstein-Skyrme model which comes from the potential of the dilaton. We have applied also the turning point method to establish that one of the black-hole branches of solutions is unstable. The turning point method here is based on the first law of black-hole thermodynamics a detailed derivation of which is given in the Appendix of the paper.Comment: 19 pages, 10 figures; v2: typos corrected, comments adde

    Time Evolution of the Radial Perturbations and Linear Stability of Solitons and Black Holes in a Generalized Skyrme Model

    Full text link
    We study the time evolution of the radial perturbation for self-gravitating soliton and black-hole solutions in a generalized Skyrme model in which a dilaton is present. The background solutions were obtained recently by some of the authors. For both the solitons and the black holes two branches of solutions exist which merge at some critical value of the corresponding parameter. The results show that, similar to the case without a scalar field, one of the branches is stable against radial perturbations and the other is unstable. The conclusions for the linear stability of the black holes in the generalized Skyrme model are also in agreement with the results from the thermodynamical stability analysis based on the turning point method.Comment: 18 pages, 12 figures; v2: typos corrected, comments adde

    Subclinical reactivation of varicella zoster virus after covid-19 as a possible cause of stroke in young patient

    Get PDF
    Previous studies have observed an association between Varicella Zoster Virus (VZV) infection and stroke. Here we discuss possible causes of Herpes Zoster (HZ) due to COVID-19. Reactivation of VZV caused by decline of cellular immune response has been noted during the convalescent period or after recovery from COVID-19. Whether s troke can be a late sequel of a COVID-19 due to different inflammatory and coagulation mechanisms is currently uncertain. We present the case of a young patient with acute ischemic stroke, two months after mild COVID19 infection associated with subclinical reactivation of VZV infection and discuss possible causes of stroke. Diffusio

    Thermodynamic analysis of black hole solutions in gravitating nonlinear electrodynamics

    Full text link
    We perform a general study of the thermodynamic properties of static electrically charged black hole solutions of nonlinear electrodynamics minimally coupled to gravitation in three space dimensions. The Lagrangian densities governing the dynamics of these models in flat space are defined as arbitrary functions of the gauge field invariants, constrained by some requirements for physical admissibility. The exhaustive classification of these theories in flat space, in terms of the behaviour of the Lagrangian densities in vacuum and on the boundary of their domain of definition, defines twelve families of admissible models. When these models are coupled to gravity, the flat space classification leads to a complete characterization of the associated sets of gravitating electrostatic spherically symmetric solutions by their central and asymptotic behaviours. We focus on nine of these families, which support asymptotically Schwarzschild-like black hole configurations, for which the thermodynamic analysis is possible and pertinent. In this way, the thermodynamic laws are extended to the sets of black hole solutions of these families, for which the generic behaviours of the relevant state variables are classified and thoroughly analyzed in terms of the aforementioned boundary properties of the Lagrangians. Moreover, we find universal scaling laws (which hold and are the same for all the black hole solutions of models belonging to any of the nine families) running the thermodynamic variables with the electric charge and the horizon radius. These scale transformations form a one-parameter multiplicative group, leading to universal "renormalization group"-like first-order differential equations. The beams of characteristics of these equations generate the full set of black hole states associated to any of these gravitating nonlinear electrodynamics...Comment: 51 single column pages, 19 postscript figures, 2 tables, GRG tex style; minor corrections added; final version appearing in General Relativity and Gravitatio

    Gravitational waves from single neutron stars: an advanced detector era survey

    Full text link
    With the doors beginning to swing open on the new gravitational wave astronomy, this review provides an up-to-date survey of the most important physical mechanisms that could lead to emission of potentially detectable gravitational radiation from isolated and accreting neutron stars. In particular we discuss the gravitational wave-driven instability and asteroseismology formalism of the f- and r-modes, the different ways that a neutron star could form and sustain a non-axisymmetric quadrupolar "mountain" deformation, the excitation of oscillations during magnetar flares and the possible gravitational wave signature of pulsar glitches. We focus on progress made in the recent years in each topic, make a fresh assessment of the gravitational wave detectability of each mechanism and, finally, highlight key problems and desiderata for future work.Comment: 39 pages, 12 figures, 2 tables. Chapter of the book "Physics and Astrophysics of Neutron Stars", NewCompStar COST Action 1304. Minor corrections to match published versio

    A Compressed Sensing Framework for Magnetic Resonance Fingerprinting

    Get PDF
    Inspired by the recently proposed Magnetic Resonance Fingerprinting (MRF) technique we develop a principled compressed sensing framework for quantitative MRI. The three key components are: a random pulse excitation sequence following the MRF technique; a random EPI subsampling strategy and an iterative projection algorithm that imposes consistency with the Bloch equations. We show that, as long as the excitation sequence possesses an appropriate form of persistent excitation, we are able to achieve accurate recovery the proton density, T1, T2 and off-resonance maps simultaneously from a limited number of samples

    Signatures of de-domestication in autochthonous pig breeds and of domestication in wild boar populations from MC1R and NR6A1 allele distribution

    Get PDF
    Autochthonous pig breeds are usually reared in extensive or semi-extensive production systems that might facilitate contact with wild boars and, thus, reciprocal genetic exchanges. In this study, we analysed variants in the melanocortin 1 receptor (MC1R) gene (which cause different coat colour phenotypes) and in the nuclear receptor subfamily 6 group A member 1 (NR6A1) gene (associated with increased vertebral number) in 712 pigs of 12 local pig breeds raised in Italy (Apulo-Calabrese, Casertana, Cinta Senese, Mora Romagnola, Nero Siciliano and Sarda) and south-eastern European countries (Krskopolje from Slovenia, Black Slavonian and Turopolje from Croatia, Mangalitsa and Moravka from Serbia and East Balkan Swine from Bulgaria) and compared the data with the genetic variability at these loci investigated in 229 wild boars from populations spread in the same macro-geographic areas. None of the autochthonous pig breeds or wild boar populations were fixed for one allele at both loci. Domestic and wild-type alleles at these two genes were present in both domestic and wild populations. Findings of the distribution of MC1R alleles might be useful for tracing back the complex genetic history of autochthonous breeds. Altogether, these results indirectly demonstrate that bidirectional introgression of wild and domestic alleles is derived and affected by the human and naturally driven evolutionary forces that are shaping the Sus scrofa genome: autochthonous breeds are experiencing a sort of 'de-domestication' process, and wild resources are challenged by a 'domestication' drift. Both need to be further investigated and managed

    Possible dark energy imprints in gravitational wave spectrum of mixed neutron-dark-energy stars

    Full text link
    In the present paper we study the oscillation spectrum of neutron stars containing both ordinary matter and dark energy in different proportions. Within the model we consider, the equilibrium configurations are numerically constructed and the results show that the properties of the mixed neuron-dark-energy star can differ significantly when the amount of dark energy in the stars is varied. The oscillations of the mixed neuron-dark-energy stars are studied in the Cowling approximation. As a result we find that the frequencies of the fundamental mode and the higher overtones are strongly affected by the dark energy content. This can be used in the future to detect the presence of dark energy in the neutron stars and to constrain the dark-energy models.Comment: 17 pages, 8 figures, LaTe
    corecore