13 research outputs found

    Secreted Cytokines within the Urine of AKI Patients Modulate TP53 and SIRT1 Levels in a Human Podocyte Cell Model

    Get PDF
    Acute kidney injury (AKI) is a major kidney disease with a poor clinical outcome. It is a common complication, with an incidence of 10–15% of patients admitted to hospital. This rate even increases for patients who are admitted to the intensive care unit, with an incidence of >50%. AKI is characterized by a rapid increase in serum creatinine, decrease in urine output, or both. The associated symptoms include feeling sick or being sick, diarrhoea, dehydration, decreased urine output (although occasionally the urine output remains normal), fluid retention causing swelling in the legs or ankles, shortness of breath, fatigue and nausea. However, sometimes acute kidney injury causes no signs or symptoms and is detected by lab tests. Therefore, the identification of cytokines for the early detection and diagnosis of AKI is highly desirable, as their application might enable the prevention of the progression from AKI to chronic kidney disease (CKD). In this study, we analysed the secretome of the urine of an AKI patient cohort by employing a kidney-biomarker cytokine assay. Based on these results, we suggest ADIPOQ, EGF and SERPIN3A as potential cytokines that might be able to detect AKI as early as 24 h post-surgery. For the later stages, as common cytokines for the detection of AKI in both male and female patients, we suggest VEGF, SERPIN3A, TNFSF12, ANPEP, CXCL1, REN, CLU and PLAU. These cytokines in combination might present a robust strategy for identifying the development of AKI as early as 24 h or 72 h post-surgery. Furthermore, we evaluated the effect of patient and healthy urine on human podocyte cells. We conclude that cytokines abundant in the urine of AKI patients trigger processes that are needed to repair the damaged nephron and activate TP53 and SIRT1 to maintain the balance between proliferation, angiogenesis, and cell cycle arrest

    Prevalence, associated factors and outcomes of pressure injuries in adult intensive care unit patients: the DecubICUs study

    Get PDF
    Funder: European Society of Intensive Care Medicine; doi: http://dx.doi.org/10.13039/501100013347Funder: Flemish Society for Critical Care NursesAbstract: Purpose: Intensive care unit (ICU) patients are particularly susceptible to developing pressure injuries. Epidemiologic data is however unavailable. We aimed to provide an international picture of the extent of pressure injuries and factors associated with ICU-acquired pressure injuries in adult ICU patients. Methods: International 1-day point-prevalence study; follow-up for outcome assessment until hospital discharge (maximum 12 weeks). Factors associated with ICU-acquired pressure injury and hospital mortality were assessed by generalised linear mixed-effects regression analysis. Results: Data from 13,254 patients in 1117 ICUs (90 countries) revealed 6747 pressure injuries; 3997 (59.2%) were ICU-acquired. Overall prevalence was 26.6% (95% confidence interval [CI] 25.9–27.3). ICU-acquired prevalence was 16.2% (95% CI 15.6–16.8). Sacrum (37%) and heels (19.5%) were most affected. Factors independently associated with ICU-acquired pressure injuries were older age, male sex, being underweight, emergency surgery, higher Simplified Acute Physiology Score II, Braden score 3 days, comorbidities (chronic obstructive pulmonary disease, immunodeficiency), organ support (renal replacement, mechanical ventilation on ICU admission), and being in a low or lower-middle income-economy. Gradually increasing associations with mortality were identified for increasing severity of pressure injury: stage I (odds ratio [OR] 1.5; 95% CI 1.2–1.8), stage II (OR 1.6; 95% CI 1.4–1.9), and stage III or worse (OR 2.8; 95% CI 2.3–3.3). Conclusion: Pressure injuries are common in adult ICU patients. ICU-acquired pressure injuries are associated with mainly intrinsic factors and mortality. Optimal care standards, increased awareness, appropriate resource allocation, and further research into optimal prevention are pivotal to tackle this important patient safety threat

    Arteries

    No full text
    corecore