1,431 research outputs found

    Symmetry Energy in Nuclear Surface

    Full text link
    Interplay between the dependence of symmetry energy on density and the variation of nucleonic densities across nuclear surface is discussed. That interplay gives rise to the mass dependence of the symmetry coefficient in an energy formula. Charge symmetry of the nuclear interactions allows to introduce isoscalar and isovector densities that are approximately independent of the magnitude of neutron-proton asymmetry.Comment: 8 pages, 4 figures, contribution to 15th Nuclear Physics Workshop "Marie & Pierre Curie", Kazimierz, Poland, 2008; minor correction

    Symmetry Energy

    Get PDF
    Examination of symmetry energy is carried out on the basis of an elementary binding-energy formula. Constraints are obtained on the energy value at the normal nuclear density and on the density dependence of the energy at subnormal densities.Comment: 10 pages, 6 figures; talk given at the 3rd Argonne/MSU/INT/JINA RIA Theory Workshop, Argonne, April 4-7, 200

    Thermodynamics of Delta resonances

    Full text link
    The thermodynamic potential of a system of pions and nucleons is computed including the piN interactions in the P33 channel. A consistent treatment of the width of the resonance in this channel, the Delta(1232) resonance, is explored in detail. In the low-density limit we recover the leading term of the virial expansion for the thermodynamic potential. An instructive diagrammatic interpretation of the contributions to the total baryon number is presented. Furthermore, we examine within a fireball model the consequences for the pion spectra in heavy-ion collisions at intermediate energies, including the effect of collective flow. A consistent treatment of the Delta width leads to a substantial enhancement of the pion yield at low momenta.Comment: 12 pages, 3 Postscript figures, LaTeX, elsart, epsfig, minor changes, references added, to be published in Physics Letters

    Symmetry Energy from Systematic of Isobaric Analog States

    Full text link
    Excitation energies to isobaric states, that are analogs of ground states, are dominated by contributions from the symmetry energy. This opens up a possibility of investigating the symmetry energy on nucleus-by-nucleus basis. Upon correcting energies of measured nuclear levels for shell and pairing effects, we find that the lowest energies for a given isospin rise in proportion to the square of isospin, allowing for an interpretation of the coefficient of proportionality in terms of a symmetry coefficient for a given nucleus. In the (A,Z) regions where there are enough data, we demonstrate a Z-independence of that coefficient. We further concentrate on the A-dependence of the coefficient, in order to learn about the density dependence of symmetry energy in uniform matter, given the changes of the density in the surface region. In parallel to the analysis of data, we carry out an analysis of the coefficient for nuclei calculated within the Skyrme-Hartree-Fock (SHF) approach, with known symmetry energy for uniform matter. While the data from isobaric analog states suggest a simple interpretation for the A-dependent symmetry coefficient, in terms of the surface and volume symmetry coefficients, the SHF results point to a more complicated situation within the isovector sector than in the isoscalar, with much stronger curvature effects in the first. We exploit the SHF results in estimating the curvature contributions to the symmetry coefficient. That assessment is hampered by instabilities of common Skyrme parameterizations of nuclear interactions.Comment: 6 pages, 3 figures; talk given at IX Latin American Symposium on Nuclear Physics and Applications, July 18-22, 2011, Quito, Ecuado

    Imaging of Sources in Heavy-Ion Reactions

    Get PDF
    Imaging of sources from data within the intensity interferometry is discussed. In the two-pion case, the relative pion source function may be determined through the Fourier transformation of the correlation function. In the proton-proton case, the discretized source function may be fitted to the correlation data.Comment: 12 pages, 3 postscript figures, accepted Physics Letters

    Fragments in Gaussian Wave-Packet Dynamics with and without correlations

    Get PDF
    Generalization of Gaussian trial wave functions in quantum molecular dynamics models is introduced, which allows for long-range correlations characteristic for composite nuclear fragments. We demonstrate a significant improvement in the description of light fragments with correlations. Utilizing either type of Gaussian wave functions, with or without correlations, however, we find that we cannot describe fragment formation in a dynamic situation. Composite fragments are only produced in simulations if they are present as clusters in the substructure of original nuclei. The difficulty is traced to the delocalization of wave functions during emission. Composite fragments are produced abundantly in the Gaussian molecular dynamics in the limit 0\hbar \rightarrow 0.Comment: 22 pages, revtex, 6 postscript figure
    corecore