125 research outputs found

    Mapping lichen changes in the summer range of the George River Caribou Herd (Québec-Labrador, Canada) using Landsat imagery (1976-1998)

    Get PDF
    Habitat studies are essential in order to understand the dynamics of migratory caribou herds and to better define management strategies. In this paper, multi-date Landsat images are used to map lichen in the summer range of the George River Caribou Herd (GRCH), Québec-Labrador (Canada), over the period from 1976 to 1998. Multi-Spectral Scanner scenes from the seventies and Thematic Mapper scenes from the eighties and nineties were radiometrically normalized and processed using spectral mixture analysis to produce lichen fraction maps and lichen change maps. Field sites, surveyed during summer campaigns in 2000 and 2001, are used to validate the lichen maps. Results show a good agreement between field data and the lichen results obtained from image analysis. Maps are then interpreted in the context of previous caribou dynamics and habitat studies conducted in the study area over the last three decades. The remote-sensing results confirm the habitat degradation and herd distribution patterns described by other investigators. The period between 1976-1979 and 1985-1986 is characterized by a localized decrease in lichen cover in the southern part of the study area, whereas from 1985-1986 to 1998 the decrease in lichen cover extends northward and westward. This period coincides with the widest extent of the GRCH summer range and activity. The approach presented in this paper provides a valuable means for better understanding the spatio-temporal relation between herd dynamics and distribution, as well as habitat use. Satellite remote sensing imagery is a useful data source, providing timely information over vast and remote territories where caribou populations cannot be surveyed and managed on a frequent basis.&nbsp

    Contemporary (1951–2001) Evolution of Lakes in the Old Crow Basin, Northern Yukon, Canada: Remote Sensing, Numerical Modeling, and Stable Isotope Analysis

    Get PDF
    This study reports on changes in the distribution, surface area, and modern water balance of lakes and ponds located in the Old Crow Basin, northern Yukon, over a 50-year period (1951–2001), using aerial photographs, satellite imagery, a numerical lake model, and stable O-H isotope analysis. Results from the analysis of historical air photos (1951 and 1972) and a Landsat-7 Enhanced Thematic Mapper (ETM+) image (2001) show an overall decrease (-3.5%) in lake surface area between 1951 and 2001. Large lakes typically decreased in extent over the study period, whereas ponds generally increased. Between 1951 and 1972, approximately 70% of the lakes increased in extent; however, between 1972 and 2001, 45% decreased in extent. These figures are corroborated by a numerical lake water balance simulation (P-E index) and stable O-H isotope analysis indicating that most lakes experienced a water deficit over the period 1988–2001. These observed trends towards a reduction in lake surface area are mainly attributable to a warmer and drier climate. The modern decrease in lake levels corresponds well to changes in regional atmospheric teleconnection patterns (Arctic and Pacific Decadal oscillations). In 1977, the climate in the region switched from a predominantly cool and moist regime, associated with the increase in lake surface area, to a hot and dry one, thus resulting in the observed decrease in lake surface area. Although some lakes may have drained catastrophically by stream erosion or bank overflow, it is not possible to determine with certainty which lakes experienced such catastrophic drainage, since an interval of two decades separates the two air photo mosaics, and the satellite image was obtained almost30 years after the second mosaic of air photos.La présente étude fait état des changements caractérisant la répartition, l’étendue et le bilan hydrique contemporain des lacs et des étangs situés dans le bassin Old Crow, dans le nord du Yukon, sur une période de 50 ans (1951–2001). L’étude s’est appuyée sur des photographies aériennes, l’imagerie satellitaire, un modèle numérique des lacs et l’analyse des isotopes stables O-H. D’après les résultats de l’analyse des photos aériennes historiques (1951 et 1972) et d’une image par capteur ETM+ (Enhanced Thematic Mapper) de Landsat-7 (2001), il y a eu rétrécissement général ( 3,5 %) de la surface des lacs entre 1951 et 2001. D’un point de vue général, l’étendue des grands lacs a diminué au cours de la période visée par l’étude, tandis que celle des étangs a augmenté. Entre 1951 et 1972, l’étendue d’environ 70 % des lacs s’est accrue, mais entre 1972 et 2001, l’étendue de 45 % des lacs a diminué. Ces données ont été corroborées au moyen de la simulation numérique du bilan hydrique des lacs (indice P-E) et de l’analyse des isotopes stables O-H, qui ont laissé entrevoir que la plupart des lacs ont enregistré un déficit en eau au cours de la période allant de 1988 à 2001. Les tendances de réduction de la surface des lacs qui ont été observées sont principalement attribuables à un climat plus chaud et plus sec. La diminution contemporaine du niveau des lacs correspond bien aux changements caractérisant les modèles régionaux de téléconnexion atmosphérique (oscillations décadaires arctiques et pacifiques). En 1977, le climat de la région est passé d’un régime à prédominance fraîche et humide (associé à l’augmentation de la surface des lacs de la région) à un régime chaud et sec, ce qui s’est traduit par la diminution de la surface des lacs qui a été observée. Bien que certains lacs puissent avoir été drainés de manière catastrophique en raison de l’érosion des cours d’eau ou du débordement des rives, il est impossible de déterminer avec certitude quels lacs ont été la cible d’un assèchement si catastrophique puisqu’un intervalle de deux décennies sépare les deux mosaïques de photographies aériennes, et que l’image satellitaire a été obtenue presque une trentaine d’années après la deuxième mosaïque de photo aérienne

    Holocene Evolution of Lakes in the Bluefish Basin, Northern Yukon, Canada

    Get PDF
    This study documents the Holocene evolution of lakes located in the Bluefish Basin, northern Yukon, on the basis of lake lithology, distribution of plant macrofossils, and radiocarbon dating of the basal organic material in sediment cores obtained from former lake basins. Basal organic matter from former lake basins is radiocarbon-dated to the late Holocene (< 3770 yr. BP), whereas the 14C ages from the polygonal peat plateaus (~2 m thick) that surround most of the former lake basins cluster in the early Holocene (between 11 435 and 8200 yr. BP). Plant macrofossil distribution in four out of five cores obtained in former lake basins indicates a transition from emergent aquatic vegetation to wetland and terrestrial-type vegetation, suggesting a gradual decline in water levels. The fifth core analyzed for macrofossils showed evidence of sudden lake drainage. The absence of 14C ages from the middle Holocene (7000 to 4000 yr. BP) suggests that the lakes had a greater spatial coverage and water levels during that period, a conclusion supported by the greater surface area occupied by the former lake basins relative to modern lakes and by the fact that the middle Holocene was a wet period in northern Yukon. The gradual decrease in water levels during the late Holocene could be attributed to partial drainage of lakes, increased evaporation under a drier climate, or a combination of both. Acomparison with other regional climate records indicates a change toward drier climate conditions around 4500 yr. BP as a result of a reconfiguration in large-scale atmospheric circulation patterns, suggesting a climate-driven change in hydrological conditions.La présente étude retrace l’évolution des lacs de l’Holocène situés dans le bassin Bluefish, dans le nord du Yukon. Elle s’appuie sur la lithologie des lacs, la répartition des macrofossiles de plantes et la datation par le radiocarbone des matières organiques de base se trouvant dans les carottes de sédiments provenant d’anciens bassins lacustres. La datation par le radiocarbone de la matière organique de base d’anciens bassins lacustres fait remonter cette matière à l’Holocène supérieur (< 3 770 ans avant le présent), tandis que la datation par le radiocarbone des plateaux de tourbe polygonaux (~2 m d’épaisseur) qui entourent la plus grande partie du groupement d’anciens bassins lacustres remonte à l’Holocène inférieur (entre 11 435 et 8 200 ans avant le présent). La répartition des macrofossiles de plantes dans quatre des cinq carottes provenant des anciens bassins lacustres laisse voir une transition allant d’une végétation aquatique émergente à une végétation de zone humide et de type terrestre, ce qui attesterait du déclin graduel des niveaux d’eau. Dans la cinquième carotte, les macrofossiles présentaient des preuves d’un assèchement lacustre soudain. L’absence de datation par le radiocarbone de l’Holocène moyen (de 7 000 à 4 000 ans avant le présent) laisse entrevoir que les lacs s’étendaient sur de plus grandes aires et que les niveaux d’eau étaient plus élevés pendant cette période, conclusion qui est appuyée par la plus grande surface occupée par les anciens bassins lacustres relativement aux lacs contemporains et par le fait que l’Holocène moyen était une période humide dans le nord du Yukon. La diminution graduelle des niveaux d’eau pendant l’Holocène supérieur pourrait être attribuée à l’assèchement partiel des lacs, à l’évaporation accrue lors d’un climat plus sec ou à une combinaison des deux. La comparaison avec d’autres relevés climatologiques régionaux indique un changement s’orientant vers des conditions climatiques plus sèches environ 4 500 ans avant le présent, changement découlant de la reconfiguration de la circulation atmosphérique à grande échelle, ce qui laisse entendre que les conditions hydrologiques auraient évolué en raison du climat

    Satellite microwave assessment of Northern Hemisphere lake ice phenology from 2002 to 2015

    Get PDF
    A new automated method enabling consistent satellite assessment of seasonal lake ice phenology at 5 km resolution was developed for all lake pixels (water coverage  ≥  90 %) in the Northern Hemisphere using 36.5 GHz H-polarized brightness temperature (Tb) observations from the Advanced Microwave Scanning Radiometer for EOS and Advanced Microwave Scanning Radiometer 2 (AMSR-E/2) sensors. The lake phenology metrics include seasonal timing and duration of annual ice cover. A moving t test (MTT) algorithm allows for automated lake ice retrievals with daily temporal fidelity and 5 km resolution gridding. The resulting ice phenology record shows strong agreement with available ground-based observations from the Global Lake and River Ice Phenology Database (95.4 % temporal agreement) and favorable correlations (R) with alternative ice phenology records from the Interactive Multisensor Snow and Ice Mapping System (R = 0.84 for water clear of ice (WCI) dates; R = 0.41 for complete freeze over (CFO) dates) and Canadian Ice Service (R = 0.86 for WCI dates; R = 0.69 for CFO dates). Analysis of the resulting 12-year (2002–2015) AMSR-E/2 ice record indicates increasingly shorter ice cover duration for 43 out of 71 (60.6 %) Northern Hemisphere lakes examined, with significant (p  \u3c  0.05) regional trends toward earlier ice melting for only five lakes. Higher-latitude lakes reveal more widespread and larger trends toward shorter ice cover duration than lower-latitude lakes, consistent with enhanced polar warming. This study documents a new satellite-based approach for rapid assessment and regional monitoring of seasonal ice cover changes over large lakes, with resulting accuracy suitable for global change studies

    The Role of Lake Physical Variables and Atmospheric Forcings on the Change in Algal Biomass in North American Great Lakes

    Get PDF
    The perceived rise in algal biomass/bloom trends globally is assumed to be a result of climate change, however the assessment of interactions with atmospheric forcings are often limited to lab/mesocosm experiments and small-scale observational studies due to limited in situ data. This study utilizes new remote sensing data products (ESA CCI Lakes+, version 2.0.1) and gridded climate reanalysis data (ERA5 land hourly) to analyze daily time series of lake surface chlorophyll-a (Chl-a), and lake surface water temperatures (LSWT) for five North American Great Lakes (Great Bear Lake, Great Slave Lake, Lake Athabasca, Lake Winnipeg, Lake Erie) and their basins (2002-2020). Using a Dynamic Gaussian Bayesian Network (DBN), this research identifies the drivers of change in agal biomass trends. The DBN integrates past time series observations for predicting current and future Chl-a concentrations and provides Directed Acyclic Graphs outlining the direction of interactions. The DBN model returned a predictive RMSE of 0.32-4.63 μg L-1 (NRMSE = 0.73-0.98), where a timestep of 5 days most commonly returned the lowest error across all lakes. Lake Mixing Level Depth (LMLD) and LSWT were the most frequently occurring parameters in the best performing DBN models, with LMLD typically exhibited a negative slope while LSWT exhibited a positive slope in Chl-a concentration change. This study outlines the potential of remote sensing data to better understand the impact of changing climate on algal biomass and improve future projection models

    Monitoring lake ice phenology from CYGNSS: Algorithm development and assessment using Qinghai Lake, Tibet Plateau, as a case study

    Get PDF
    This study introduces the first use of Global Navigation Satellite System Reflectometry (GNSS-R) for monitoring lake ice phenology. This is demonstrated using Qinghai Lake, Tibetan Plateau, as a case study. Signal-to-Noise Ratio (SNR) values obtained from the Cyclone GNSS (CYGNSS) constellation over four ice seasons (2018 to 2022) were used to examine the impact of lake surface conditions on reflected GNSS signals during open water and ice cover seasons. A moving t-test (MTT) algorithm was applied to time-varying SNR values allowing for the detection of lake ice at daily temporal resolution. Strong agreement is observed between ice phenology records derived from CYGNSS and Moderate Resolution Imaging Spectroradiometer (MODIS) imagery. Differences during freeze-up (i.e., the period starting with the first appearance of ice on the lake until the lake becomes fully ice covered) ranged from 3 to 21 days with a mean bias error (MBE) and mean absolute error (MAE) of 10 days, while those during breakup (i.e., the period beginning with the first pixel of open water and ending when the whole lake becomes ice-free) ranged from 3 to 18 days (MBE and MAE: 6 and 7 days, respectively). Observations during the breakup period revealed the sensitivity of GNSS reflected signals to the onset of surface (snow and ice) melt before the appearance of open water conditions as determined from MODIS. While the CYGNSS constellation is limited to the coverage of lakes between 38° S and 38° N, the approach presented herein will be applicable to data from other GNSS-R missions that provide opportunities for the monitoring of ice phenology from large lakes globally (e.g., Spire constellation of satellites).This research was undertaken thanks, in part, with support from the Global Water Futures Program funded by the Canada First Research Excellence Fund (CFREF)

    Observing Scattering Mechanisms of Bubbled Freshwater Lake Ice Using Polarimetric RADARSAT-2 (C-Band) and UW-Scat (X- and Ku-Bands)

    Get PDF
    A winter time series of ground-based (X- and Ku-bands) scatterometer and spaceborne synthetic aperture radar (SAR) (C-band) fully polarimetric observations coincident with in situ snow and ice measurements are used to identify the dominant scattering mechanism in bubbled freshwater lake ice in the Hudson Bay Lowlands near Churchill, Manitoba. Scatterometer observations identify two physical sources of backscatter from the ice cover: the snow-ice and ice-water interfaces. Backscatter time series at all frequencies show increases from the ice-water interface prior to the inclusion of tubular bubbles in the ice column based on in situ observations, indicating scattering mechanisms independent of double-bounce scatter. The co-polarized phase difference of interactions at the ice-water interface from both scatterometer and SAR observations is centered at 0° during the time series, also indicating a scattering regime other than double bounce. A Yamaguchi three-component decomposition of the RADARSAT-2 C-band time series is presented, which suggests the dominant scattering mechanism to be single-bounce off the ice-water interface with appreciable surface roughness or preferentially oriented facets, regardless of the presence, absence, or density of tubular bubble inclusions. This paper builds on newly established evidence of single-bounce scattering mechanism for freshwater lake ice and is the first to present a winter time series of ground-based and spaceborne fully polarimetric active microwave observations with polarimetric decompositions for bubbled freshwater lake ice.European Space Agency (ESTEC): 10.13039/501100000844 Natural Sciences and Engineering Research Council of Canada: 10.13039/50110000003

    Variability and change in the Canadian cryosphere

    Get PDF
    Abstract During the International Polar Year (IPY), comprehensive observational research programs were undertaken to increase our understanding of the Canadian polar cryosphere response to a changing climate. Cryospheric components considered were snow, permafrost, sea ice, freshwater ice, glaciers and ice shelves. Enhancement of conventional observing systems and retrieval algorithms for satellite measurements facilitated development of a snapshot of current cryospheric conditions, providing a baseline against which future change can be assessed. Key findings include: 1. surface air temperatures across the Canadian Arctic exhibit a warming trend in all seasons over the past 40 years. A consistent pan-cryospheric response to these warming temperatures is evident through the analysis of multi-decadal datasets; 2. in recent years (including the IPY period) a higher rate of change was observed compared to previous decades including warming permafrost, reduction in snow cover extent and duration, reduction in summer sea ice extent, increased mass loss from glaciers, and thinning and break-up of the remaining Canadian ice shelves. These changes illustrate both a reduction in the spatial extent and mass of the cryosphere and an increase in the temporal persistence of melt related parameters. The observed changes in the cryosphere have important implications for human activity including the close ties of northerners to the land, access to northern regions for natural resource development, and the integrity of northern infrastructure

    Web-GIS Visualisation of Permafrost-Related Remote Sensing Products for ESA GlobPermafrost

    Get PDF
    The GlobPermafrost project focuses on the accessibility of remote sensing data. This comprises of data product generation as well as on specific infrastructure to give information on and access to data. Further information regarding project status and events are available from www.globpermafrost.info. An online user survey conducted within the project highlights that GIS software is applied by a great deal of the user community. Additionally, data preview was requested by the majority of the survey participants. The Permafrost Information System PerSys will be conceptualized as an open access geospatial data dissemination and visualization portal. PerSys will allow raster and vector products visualisation resulting from GlobPermafrost such as land cover classifications, Landsat/Sentinel Trend datasets, lake and wetland extents, InSAR-based land surface deformation maps, block glaciers’ velocity fields, spatial permafrost model outputs, LST datasets, and many more. The data will be published as WebGIS services relying on OGC-standardized Web Mapping Service (WMS) and Web Feature Service (WFS) technologies for data display and visualization. The technical WebGIS environment will be hosted at AWI where a geodata infrastructure has been implemented comprising of ArcGIS for Server 10.4, PostgreSQL 9.2 and a browser-driven data viewer unit based on Leaflet (http://leafletjs.com). Independently, we will provide an ‘Access - Restricted Data Dissemination Service’, which will be available to users for testing frequently updated versions of project datasets. In addition, the European Research Council (ERC) funded PETA-CARB project (http://www.awi.de/) developing the Arctic Permafrost Geospatial Centre (APGC) where PerSys will become a core project. The APGC Data Catalogue will contain all final products of GlobPermafrost and links to the derived permanent DOI-based ESA remote sensing products archived in PANGAEA data repository

    Impact of Spectral Resolution on Quantifying Cyanobacteria in Lakes and Reservoirs: A Machine-Learning Assessment

    Get PDF
    Cyanobacterial harmful algal blooms are an increasing threat to coastal and inland waters. These blooms can be detected using optical radiometers due to the presence of phycocyanin (PC) pigments. The spectral resolution of best-available multispectral sensors limits their ability to diagnostically detect PC in the presence of other photosynthetic pigments. To assess the role of spectral resolution in the determination of PC, a large ( N=905 ) database of colocated in situ radiometric spectra and PC are employed. We first examine the performance of selected widely used machine-learning (ML) models against that of benchmark algorithms for hyperspectral remote sensing reflectance ( Rrs ) spectra resampled to the spectral configuration of the Hyperspectral Imager for the Coastal Ocean (HICO) with a full-width at half-maximum (FWHM) of < 6 nm. Results show that the multilayer perceptron (MLP) neural network applied to HICO spectral configurations (median errors < 65%) outperforms other ML models. This model is subsequently applied to Rrs spectra resampled to the band configuration of existing satellite instruments and of the one proposed for the next Landsat sensor. These results confirm that employing MLP models to estimate PC from hyperspectral data delivers tangible improvements compared with retrievals from multispectral data and benchmark algorithms (with median errors between ∼73 % and 126%) and shows promise for developing a globally applicable cyanobacteria measurement approach
    • …
    corecore