104 research outputs found

    Comment on "Quantitative wave-particle duality in multibeam interferometers"

    Full text link
    In a recent paper [Phys. Rev. {\bf A64}, 042113 (2001)] S. D\"urr proposed an interesting multibeam generalization of the quantitative formulation of interferometric wave-particle duality, discovered by Englert for two-beam interferometers. The proposed generalization is an inequality that relates a generalized measure of the fringe visibility, to certain measures of the maximum amount of which-way knowledge that can be stored in a which-way detector. We construct an explicit example where, with three beams in a pure state, the scheme proposed by D\"{u}rr leads to the possibility of an ideal which-way detector, that can achieve a better path-discrimination, at the same time as a better fringe visibility. In our opinion, this seems to be in contrast with the intuitive idea of complementarity, as it is implemented in the two-beams case, where an increase in path discrimination always implies a decrease of fringe visibility, if the beams and the detector are in pure states.Comment: 4 pages, 1 encapsulated figure. In press on Phys. Rev.

    Creation of NOON states by double Fock-state/Bose-Einstein condensates

    Full text link
    NOON states (states of the form N>a0>b+0>aN>b|N>_{a}|0>_{b}+|0>_{a}|N>_{b} where aa and bb are single particle states) have been used for predicting violations of hidden-variable theories (Greenberger-Horne-Zeilinger violations) and are valuable in metrology for precision measurements of phase at the Heisenberg limit. We show theoretically how the use of two Fock state/Bose-Einstein condensates as sources in a modified Mach Zender interferometer can lead to the creation of the NOON state in which aa and bb refer to arms of the interferometer and NN is the total number of particles in the two condensates. The modification of the interferometer involves making conditional ``side'' measurements of a few particles near the sources. These measurements put the remaining particles in a superposition of two phase states, which are converted into NOON states by a beam splitter. The result is equivalent to the quantum experiment in which a large molecule passes through two slits. The NOON states are combined in a final beam splitter and show interference. Attempts to detect through which ``slit'' the condensates passed destroys the interference.Comment: 8 pages 5 figure

    The Free Will Theorem

    Full text link
    On the basis of three physical axioms, we prove that if the choice of a particular type of spin 1 experiment is not a function of the information accessible to the experimenters, then its outcome is equally not a function of the information accessible to the particles. We show that this result is robust, and deduce that neither hidden variable theories nor mechanisms of the GRW type for wave function collapse can be made relativistic. We also establish the consistency of our axioms and discuss the philosophical implications.Comment: 31 pages, 6figure

    Nonlocal appearance of a macroscopic angular momentum

    Full text link
    We discuss a type of measurement in which a macroscopically large angular momentum (spin) is "created" nonlocally by the measurement of just a few atoms from a double Fock state. This procedure apparently leads to a blatant nonconservation of a macroscopic variable - the local angular momentum. We argue that while this gedankenexperiment provides a striking illustration of several counter-intuitive features of quantum mechanics, it does not imply a non-local violation of the conservation of angular momentum.Comment: 10 pages, 1 figur

    Bell inequalities as constraints on unmeasurable correlations

    Full text link
    The interpretation of the violation of Bell-Clauser-Horne inequalities is revisited, in relation with the notion of extension of QM predictions to unmeasurable correlations. Such extensions are compatible with QM predictions in many cases, in particular for observables with compatibility relations described by tree graphs. This implies classical representability of any set of correlations , , , and the equivalence of the Bell-Clauser-Horne inequalities to a non void intersection between the ranges of values for the unmeasurable correlation associated to different choices for B. The same analysis applies to the Hardy model and to the "perfect correlations" discussed by Greenberger, Horne, Shimony and Zeilinger. In all the cases, the dependence of an unmeasurable correlation on a set of variables allowing for a classical representation is the only basis for arguments about violations of locality and causality.Comment: Some modifications have been done in order to improve clarity of presentation and comparison with other approache

    Information Invariance and Quantum Probabilities

    Full text link
    We consider probabilistic theories in which the most elementary system, a two-dimensional system, contains one bit of information. The bit is assumed to be contained in any complete set of mutually complementary measurements. The requirement of invariance of the information under a continuous change of the set of mutually complementary measurements uniquely singles out a measure of information, which is quadratic in probabilities. The assumption which gives the same scaling of the number of degrees of freedom with the dimension as in quantum theory follows essentially from the assumption that all physical states of a higher dimensional system are those and only those from which one can post-select physical states of two-dimensional systems. The requirement that no more than one bit of information (as quantified by the quadratic measure) is contained in all possible post-selected two-dimensional systems is equivalent to the positivity of density operator in quantum theory.Comment: 8 pages, 1 figure. This article is dedicated to Pekka Lahti on the occasion of his 60th birthday. Found. Phys. (2009
    corecore