17 research outputs found

    Numerical modelling of subglacial ribs, drumlins, herringbones, and mega-scale glacial lineations reveals their developmental trajectories and transitions

    Get PDF
    Initially a matter of intellectual curiosity, but now important for understanding ice-sheet dynamics, the formation of subglacial bedforms has been a subject of scientific enquiry for over a century. Here, we use a numerical model of the coupled flow of ice, water, and subglacial sediment to explore the formation of subglacial ribs (i.e., ribbed moraine), drumlins and mega-scale glacial lineations (MSGLs). The model produces instabilities at the ice–bed interface, which result in landforms resembling subglacial ribs and drumlins. We find that a behavioural trajectory is present. Initially subglacial ribs form, which can either develop into fields of organized drumlins, or herringbone-type structures misaligned with ice flow. We present potential examples of these misaligned bedforms in deglaciated landscapes, the presence of which means caution should be taken when interpreting cross-cutting bedforms to reconstruct ice flow directions. Under unvarying ice flow parameters, MSGLs failed to appear in our experiments. However, drumlin fields can elongate into MSGLs in our model if low ice–bed coupling conditions are imposed. The conditions under which drumlins elongate into MSGLs are analogous to those found beneath contemporary ice streams, providing the first mechanism, rather than just an association, for linking MSGLs with ice stream flow. We conclude that the instability theory, as realized in this numerical model, is sufficient to explain the fundamental mechanics and process-interactions that lead to the initiation of subglacial bedforms, the development of the distinctive types of bedform patterns, and their evolutionary trajectories. We therefore suggest that the first part of the longstanding ‘drumlin problem’ – how and why they come into existence – is now solved. However, much remains to be discovered regarding the exact sedimentary and hydrological processes involved

    Assessing ice sheet models against the landform record: the Likelihood of Accordant Lineations Analysis (LALA) tool

    Get PDF
    Palaeo-ice sheets leave behind a rich database regarding their past behaviour, recorded in the landscape in the form of glacial geomorphology. The most numerous landform created by these ice sheets are subglacial lineations, which generate snapshots of the direction of ice flow at fixed (yet typically unknown) points in time. Despite their relative density within the landform record, the information provided by subglacial lineations is currently underutilised in tests of numerical ice sheet models. To some extent, this is a consequence of ongoing debate regarding lineation formation, but predominantly, it reflects the lack of rigorous model-data comparison techniques that would enable lineation information to be properly integrated. Here, we present the Likelihood of Accordant Lineations Analysis (LALA) tool. LALA provides a statistically rigorous measure of the log-likelihood of a supplied ice sheet simulation through comparison of simulation output with both the location and direction of observed lineations. Given an ensemble of ice sheet simulations, LALA provides a formal, and statistically underpinned, quantitative assessment of each simulation's quality-of-fit to mapped lineations. This enables a comparison of each simulation's relative plausibility, including identification of the most likely ice sheet simulations amongst the ensemble. This is achieved by modelling lineation formation as a marked Poisson point process and comparison of observed to modelled flow directions using the von Mises distribution. LALA is flexible—users can adapt parameters to account for differing assumptions regarding lineation formation, and for variations in the level of precision required for differing model-data comparison experiments. We provide guidelines and rationale for assigning parameter values, including an assessment of the variability between users when mapping lineations. Finally, we demonstrate the utility of LALA through application to an ensemble of simulations of the last British-Irish Ice Sheet. This comparison highlights the benefits of LALA over previous tools and demonstrates some of the considerations of experimental design required when identifying the fit between ice sheet model simulations and the landform record

    The internal structure of a debris-covered glacier on Mars revealed by gully incision

    Get PDF
    Viscous flow features (VFFs) in Mars' mid latitudes are analogous to debris-covered glaciers on Earth. They have complex, often curvilinear patterns on their surfaces, which probably record histories of ice flow. As is the case for glaciers on Earth, patterns on the surfaces of VFFs are likely to reflect complexities in their subsurface structure. Until now, orbital observations of VFF-internal structures have remained elusive. We present observations of internal structures within a small, kilometer-scale VFF in the Nereidum Montes region of Mars' southern mid latitudes, using images from the Context Camera (CTX) and High Resolution Imaging Science Experiment (HiRISE) instruments on Mars Reconnaissance Orbiter. The VFF-internal structures are revealed by a gully incision, which extends from the VFF headwall to its terminus and intersects curvilinear undulations and a crevasse field on the VFF surface. Near to the VFF terminus, the curvilinear VFF-surface undulations connect to the VFF-internal layers, which are inclined and extend down to the VFF's deep interior, and possibly all the way to the bed. Similar structures are common near to the termini of glaciers on Earth; they form under ice flow compression where ice thins and slows approaching the ice margin, and ice flow is forced up towards the surface. We performed 3D ice flow modeling which supports this analogy, revealing that the inclined VFF-internal structures, and associated curvilinear structures on the VFF surface, are located in a zone of strong ice flow compression where ice flow deviates upwards away from the bed. The inclined VFF-internal structures we observe could represent up-warped VFF-internal layering transported up to the surface from the VFF's deep interior, or thrust structures representing debris transport pathways between the VFF's bed and its surface. Our observations raise numerous considerations for future surface missions targeting Mars' mid-latitude subsurface ice deposits. Inclined layers formed under flow compression could reduce the requirement for high-cost, high-risk deep drilling to address high-priority science questions. They could allow futures missions to (a) access ice age sequences for palaeoenvironmental reconstruction via shallow sampling along transects of ice surfaces where layers of progressively older age outcrop, and/or (b) access samples of ice/lithics transported to shallow/surface positions from environments of astrobiological interest at/near glacier beds. However, our observations also raise considerations for potential drilling hazards associated with structural complexities and potential dust/debris layers within subsurface ice deposits on Mars. They highlight the importance of characterizing VFF-surface structures, and their relationships to VFF-internal structure and ice flow histories ahead of ice access missions to Mars

    Sinuous ridges and the history of fluvial and glaciofluvial activity in Chukhung Crater, Tempe Terra, Mars

    Get PDF
    International audience<p>We explore the origins of a complex assemblage of sinuous ridges in Chukhung crater (38.47°N, 72.42°W), Tempe Terra, Mars, and discuss the implications of the landsystem for post-Noachian fluvial and glaciofluvial activity in this location [1].</p><p>We produced a geomorphic map of Chukhung crater using a basemap of 6 m/pixel Context Camera (CTX) images and a 75 m/pixel High Resolution Stereo Camera digital elevation model (DEM). We used 25 cm/pixel High Resolution Imaging Science Experiment images, and a 24 cm/pixel DEM generated from CTX stereopair images [2] to aid classifications of sinuous ridges into four morpho-stratigraphic subtypes. We constrained an age envelope of ~2.1–3.6 Ga for Chukhung crater using modelled ages (from crater size-frequency analyses) of units above and below it in the regional stratigraphy. We derived a minimum model age of ~330 Ma for viscous flow features (putative debris-covered glaciers) in southern Chukhung crater.</p><p>Sinuous ridges in southern Chukhung crater emerge from moraine-like deposits associated with the debris-covered glaciers. Sinuous ridges in northern Chukhung crater extend from dendritic fluvial valley networks on the crater wall. The northern sinuous ridges are most likely to be inverted palaeochannels, which comprise subaerial river sediments exhumed as ridges by erosion of surrounding materials.</p><p>Both sinuous ridge subtypes in southern Chukhung crater have numerous esker-like properties. Eskers are ridges of glaciofluvial sediment deposited in meltwater tunnels within or beneath glacial ice. One of the ridge subtypes in southern Chukhung crater is best explained as eskers because these ridges ascend the sides of their host valleys and, in places, escape over them onto adjacent plains. Post-depositional processes can cause inverted paleochannels to cross local undulations in the contemporary topography [3] but the ascent and escape over larger, pre-existing topographic divides is (as yet) not adequately explained by these mechanisms. Eskers, in contrast, form under hydraulic pressure in ice-confined tunnels, and commonly ascend valley walls and cross topographic divides. The esker-like properties of the second sinuous ridge subtype in southern Chukhung crater can also be explained under the inverted palaeochannel hypothesis so the origins of these ridges remain more ambiguous.</p><p>Chukhung crater has undergone protracted and/or episodic modification by liquid water since its formation between the early Hesperian and early Amazonian. This falls after the Noachian period (>3.7 Ga), when most major fluvial activity on Mars occurred. Esker-forming wet-based glaciation in Chukhung crater might have occurred as recently as the mid Amazonian (>330 Ma), when climate conditions are thought to have been cold and hyper-arid. Rare occurrences of eskers associated with Amazonian-aged glaciers in Mars’ mid-latitudes are attributed to transient, localised geothermal heating within tectonic rift/graben settings [4]. The location of Chukhung crater between major branches of the large Tempe Fossae volcano-tectonic rift system is consistent with this hypothesis.</p><p>References: [1] Butcher et al. 2021, Icarus 357, 114131. [2] Mayer and Kite 2016, Lunar Planet. Sci. Conf. Abstract #1241. [3] Lefort et al. 2012, J. Geophys. Res. Planets 117, E03007. [4] Butcher et al. 2017, J. Geophys. Res. Planets 122, 2445–2468.</p&gt

    Molards as an analogue for ejecta-ice interactions on Mars

    Get PDF
    International audience<p>The 125-km-diameter Hale impact crater is located in the southern hemisphere of Mars and has been dated to 1 Ga (Early to Middle Amazonian; Jones et al., 2011). It is thought to have penetrated the martian cryosphere, because it hosts landforms indicating volatile mobilisation post-impact: its ejecta are lobate and bear channels, and the interior is pervasively pitted and hosts alluvial fans (Collins-May et al. 2020; El-Maarry et al., 2013; Jones et al., 2011; Tornabene et al., 2012). Here, we test the hypothesis that conical mounds found within the ejecta are “molards” by comparing them to terrestrial analogues. Molards are conical mounds of debris resulting from the degradation of blocks of ice-rich material which have been mobilised by a landslide and are found in periglacial environments (Morino et al., 2019).</p><p>Our study area (240x180 km) is in the South-East part of the Hale impact crater ejecta (36°–39°S, 36°–31°W). We analyse the spatial and topographic distribution of the conical mounds using orbital images from 25 cm/pixel to 15 m/pixel and measure their height, width and slope using 1 m/pixel elevation data. We then compare them to conical mounds on the deposits of the 2010 Mount Meager debris avalanche, Canada (Roberti et al. 2017) and of the 2000 Paatuut landslide in western Greenland (Dahl-Jensen et al. 2004).</p><p>The conical mounds of the Hale impact crater are located at the distal boundary of the thickest part of the ejecta blanket, which reflects the spatial distribution of mounds along the distal parts of the terminal lobe of the Mount Meager debris avalanche. Furthermore, mounds in the Hale impact crater have comparable shapes and flank slopes to molards in the Mount Meager and Paatuut case studies, but are one order of magnitude bigger. This size difference is consistent with the flow-depth that transported the blocks also being one order of magnitude bigger than on Earth.</p><p>We infer that conical mounds near the Hale impact crater are a result of fragmented blocks of ice-cemented regolith produced by the impact and transported by the ejecta flows, and finally degraded into cones of debris (molards) by the loss of interstitial ice. Our interpretation supports the prevailing hypothesis that the Hale impact event penetrated the martian cryosphere and further provides important constraints on the rheology of martian ejecta deposits that can be tested by future studies and in other locations on Mars.</p><p>We acknowledge financial support for the PERMOLARDS project from French National Research Agency (ANR-19-CE01-0010).</p&gt

    Eskers associated with buried glaciers in Mars' mid latitudes: recent advances and future directions

    Get PDF
    Until recently, the influence of basal liquid water on the evolution of buried glaciers in Mars' mid latitudes was assumed to be negligible because the latter stages of Mars' Amazonian period (3 Ga to present) have long been thought to have been similarly cold and dry to today. Recent identifications of several landforms interpreted as eskers associated with these young (100s Ma) glaciers calls this assumption into doubt. They indicate basal melting (at least locally and transiently) of their parent glaciers. Although rare, they demonstrate a more complex mid-to-late Amazonian environment than was previously understood. Here, we discuss several open questions posed by the existence of glacier-linked eskers on Mars, including on their global-scale abundance and distribution, the drivers and dynamics of melting and drainage, and the fate of meltwater upon reaching the ice margin. Such questions provide rich opportunities for collaboration between the Mars and Earth cryosphere research communities

    A billion or more years of possible periglacial/glacial cycling in Protonilus Mensae, Mars

    No full text
    The long-term cyclicity and temporal succession of glacial-periglacial (or deglacial) periods or epochs are keynotes of Quaternary geology on Earth. Relatively recent work has begun to explore the histories of the mid- to higher-latitudinal terrain of Mars, especially in the northern hemisphere, for evidence of similar cyclicity and succession in the Mid to Late Amazonian Epoch. Here, we carry on with this work by focusing on Protonilus Mensae [PM] (43–490 N, 37–590 E). More specifically, we discuss, describe and evaluate an area within PM that straddles a geological contact between two ancient units: [HNt], a Noachian-Hesperian Epoch transition unit; and [eHT] an early Hesperian Epoch transition unit. Dark-toned terrain within the eHt unit (HiRISE image ESP_028457_2255) shows continuous coverage by structures akin to clastically-sorted circles [CSCs]. The latter are observed in permafrost regions on Earth where the freeze-thaw cycling of surface and/or near-surface water is commonplace and cryoturbation is not exceptional. The crater-size frequency distribution of the dark-toned terrain suggests a minimum age of ~100 Ma and a maximum age of ~1 Ga. The age estimates of the candidate CSCs fall within this dispersion. Geochronologically, this places the candidate CSCs among the oldest periglacial landforms identified on Mars so far, by at least one and possibly two orders of magnitude. Unit HNt is adjacent to unit eHt and shows surface material that is relatively light in tone. The coverage is topographically irregular and, at some locations, discontinuous. Amidst the light-toned surface, structures are observed that are akin to clastically non-sorted polygons [NSPs] and polygonised thermokarst-depressions on Earth. Terrestrial polygon/thermokarst assemblages occur in permafrost regions where the freeze thaw cycling of surface and/or near-surface water is commonplace and the permafrost is ice-rich. The crater-size frequency distribution of the light-toned terrain suggests a minimum age of ~10 Ma and a maximum age of ~100 Ma. The age estimates of the candidate ice-rich assemblages fall within this dispersion. Geochronologically, this places them well beyond the million-year ages associated with most of the other candidate ice-rich assemblages reported in the literature. Stratigraphically intertwined with the two possible periglacial terrains are landforms and landscape features (observed or unobserved but modelled) that are indicative of relatively recent glaciation (~10 Ma - 100 Ma) and glaciation long past (≥ ~ 1 Ga) to decametres of depth: glacier-(cirque) like features; viscous-flow features, lobate-debris aprons; moraine-like ridges at the fore, sides and midst of the aprons; and, patches of irregularly shaped (and possibly volatile-depleted) small-sized ridge/trough assemblages. Collectively, this deeply-seated intertwining of glacial and periglacial cycles suggests that the Mid to Late Amazonian Epochs might be more Earth-like in their cold-climate geology than has been thought hitherto
    corecore