14 research outputs found

    Recent results on heavy-ion induced reactions of interest for neutrinoless double beta decay at INFN-LNS

    Get PDF
    Abstract. The possibility to use a special class of heavy-ion induced direct reactions, such as double charge exchange reactions, is discussed in view of their application to extract information that may be helpful to determinate the nuclear matrix elements entering in the expression of neutrinoless double beta decay halflife. The methodology of the experimental campaign presently running at INFN - Laboratori Nazionali del Sud is reported and the experimental challenges characterizing such activity are describe

    New results from the NUMEN project

    Get PDF
    NUMEN aims at accessing experimentally driven information on Nuclear Matrix Elements (NME) involved in the half-life of the neutrinoless double beta decay (0νββ), by high-accuracy measurements of the cross sections of Heavy Ion (HI) induced Double Charge Exchange (DCE) reactions. First evidence about the possibility to get quantitative information about NME from experiments is found for the (18O,18Ne) and (20Ne,20O) reactions. Moreover, to infer the neutrino average masses from the possible measurement of the half-life of 0νββ decay, the knowledge of the NME is a crucial aspect. The key tools for this project are the high resolution Superconducting Cyclotron beams and the MAGNEX magnetic spectrometer at INFN Laboratori Nazionali del Sud in Catania (Italy). The measured cross sections are extremely low, limiting the present exploration to few selected isotopes of interest in the context of typically low-yield experimental runs. A major upgrade of the LNS facility is foreseen in order to increase the experimental yield of at least two orders of magnitude, thus making feasible a systematic study of all the cases of interest. peerReviewe

    Present outcome from the NUMEN R&D phase

    No full text
    International audienceThe NUMEN experiment aims at measuring double charge exchange reaction cross sections using heavy-ion beams of unprecedented intensity on specific isotopes. In order to get data-sets with good statistical significance from challengingly low cross sections it asks for the upgrade of the pre-existing magnetic spectrometer MAGNEX at INFN-LNS, in Catania. These reactions prove to be a way of getting information on the nuclear matrix elements of the neutrino-less double beta decay, the most promising probe to establish the Majorana or Dirac nature of the neutrino, and to evaluate the effective neutrino mass. A new setup for the target system is under development and adequate detectors are under study for the tracking and the identification of heavy ions at the expected rate up to 5 Mpps and for gamma-ray measurements. The tracker is a time projection chamber with electron amplification based on a triple Thick Gas Electron Multiplier (THGEM) foil, the particle identification is performed with telescopes composed of Silicon Carbide (SiC) and Thallium doped Cesium Iodide (CsI(Tl)) sensors, the gamma-ray detection is sustained with Cerium doped Lantanum Bromide (LaBr3(Ce)) scintillator detectors. Here a selection of results of the R&D phase and the integration study are presented. •NUMEN measures double charge exchange reaction cross sections using heavy-ion beams.•The higher interaction rate demands a complete upgrade of the MAGNEX spectrometer.•A new scattering chamber will host an innovative target system.•The tracker is a time projection chamber based on a THGEM foil

    Upgrade of the MAGNEX spectrometer toward the high-intensity phase of NUMEN

    Get PDF
    The NUMEN experimental activity with accelerated beams is performed at INFN–Laboratori Nazionali del Sud (LNS) in Catania using the Superconducting Cyclotron and the MAGNEX magnetic spectrometer. The scientific motivation of NUMEN is to extract experiment-driven information on the nuclear matrix elements entering in the expression of the 0νββ decay half-life. The reaction cross sections involved, especially for the double charge exchange process, are very low, thus limiting the present exploration to a few selected isotopes of interest in the context of typically low-yield experimental runs. In order to make feasible a systematic study of all the candidate nuclei, a major upgrade of the LNS facility is foreseen to increase the experimental yield by more than two orders of magnitude. To this purpose, frontier technologies are being developed for the accelerator and the detection systems. An updated description of the choices derived from the recent R&D activity on the target system and MAGNEX focal plane detector is given

    Recent results on heavy-ion induced reactions of interest for neutrinoless double beta decay at INFN-LNS

    No full text
    The possibility to use a special class of heavy-ion induced direct reactions, such as double charge exchange reactions, is discussed in view of their application to extract information that may be helpful to determinate the nuclear matrix elements entering in the expression of neutrinoless double beta decay half-life. The methodology of the experimental campaign presently running at INFN - Laboratori Nazionali del Sud is reported and the experimental challenges characterizing such activity are described

    Initial State Interaction for the 20^{20}Ne + 130^{130}Te and 18^{18}O + 116^{116}Sn Systems at 15.3 AMeV from Elastic and Inelastic Scattering Measurements

    Get PDF
    International audienceDouble charge exchange (DCE) reactions could provide experimentally driven information about nuclear matrix elements of interest in the context of neutrinoless double-β decay. To achieve this goal, a detailed description of the reaction mechanism is mandatory. This requires the full characterization of the initial and final-state interactions, which are poorly known for many of the projectile-target systems involved in future DCE studies. Among these, we intend to study the 20Ne + 130Te and 18O + 116Sn systems at 15.3 AMeV, which are particularly relevant due to their connection with the 130Te→130Xe and 116Cd→116Sn double-β decays. We measure the elastic and inelastic scattering cross-section angular distributions and compare them with theoretical calculations performed in the optical model, one-step distorted wave Born approximation, and coupled-channel approaches using the São Paulo double-folding optical potential. A good description of the experimental data in the whole explored range of transferred momenta is obtained provided that couplings with the 21+ states of the projectile and target are explicitly included within the coupled-channel approach. These results are relevant also in the analysis of other quasi-elastic reaction channels in these systems, in which the same couplings should be included

    The multichannel experimental and theoretical study of the 12^{12}C(18^{18}O,18^{18}F)12^{12}B single charge exchange reaction mechanism

    No full text
    International audienceThe study of a network of nuclear reactions populated in the 18O + 12C collision is the main topic of the present paper. It was performed to test nuclear structure and reaction theories in describing the full reaction mechanism occurring in the (18O, 18F) single charge exchange nuclear reaction. From the experimental side, an 18O beam was produced at 275 MeV incident energy by the K800 superconducting cyclotron and the MAGNEX magnetic spectrometer was used at the Laboratori Nazionali del Sud of the Istituto Nazionale di Fisica Nucleare to momentum analyse the ejectiles produced in the nuclear reactions within the same experimental setup. From the theoretical side, the proposed approach consists of analysing the whole network of nuclear reactions in the framework of a unique comprehensive and coherent theoretical calculation. This holistic approach, applied both to the experimental and theoretical analysis, is the main feature and novelty of the work presented here

    The NUMEN Heavy Ion Multidetector for a Complementary Approach to the Neutrinoless Double Beta Decay

    No full text
    International audienceNeutrinos are so far the most elusive known particles, and in the last decades many sophisticated experiments have been set up in order to clarify several questions about their intrinsic nature, in particular their masses, mass hierarchy, intrinsic nature of Majorana or Dirac particles. Evidence of the Neutrinoless Double-Beta Decay (NDBD) would prove that neutrinos are Majorana particles, thus improving the understanding of the universe itself. Besides the search for several large underground experiments for the direct experimental detection of NDBD, the NUMEN experiment proposes the investigation of a nuclear mechanism strongly linked to this decay: the Double Charge Exchange reactions (DCE). As such reactions share with the NDBD the same initial and final nuclear states, they could shed light on the determination of the Nuclear Matrix Elements (NMEs), which play a relevant role in the decay. The physics of DCE is described elsewhere in this issue, while the focus of this paper will be on the challenging experimental apparatus currently under construction in order to fulfil the requirements of the NUMEN experiment. The overall structure of the technological improvement to the cyclotron, along with the newly developed detection systems required for tracking and identifying the reaction products and their final excitation level are described
    corecore