1,502 research outputs found

    Pattern phase diagram for 2D arrays of coupled limit-cycle oscillators

    Full text link
    Arrays of coupled limit-cycle oscillators represent a paradigmatic example for studying synchronization and pattern formation. They are also of direct relevance in the context of currently emerging experiments on nano- and optomechanical oscillator arrays. We find that the full dynamical equations for the phase dynamics of such an array go beyond previously studied Kuramoto-type equations. We analyze the evolution of the phase field in a two-dimensional array and obtain a "phase diagram" for the resulting stationary and non-stationary patterns. The possible observation in optomechanical arrays is discussed briefly

    Unjamming of Granular Packings due to Local Perturbations: Stability and Decay of Displacements

    Full text link
    We study the mechanical response generated by local deformations in jammed packings of rigid disks. Based on discrete element simulations we determine the critical force of the local perturbation that is needed to break the mechanical equilibrium and examine the generated displacement field. Displacements decay as a power law of the distance from the perturbation point. The decay exponent and the critical force exhibit nontrivial dependence on the friction: Both quantities are nonmonotonic and have a sharp maximum at the friction coefficient 0.1. We find that the mechanical response properties are closely related to the problem of force-indeterminacy where similar nonmonotonic behavior was observed previously. We establish direct connection between the critical force and the ensemble of static force networks.Comment: 4 pages, 4 figure

    Extent of force indeterminacy in packings of frictional rigid disks

    Full text link
    Static packings of frictional rigid particles are investigated by means of discrete element simulations. We explore the ensemble of allowed force realizations in the space of contact forces for a given packing structure. We estimate the extent of force indeterminacy with different methods. The indeterminacy exhibits a nonmonotonic dependence on the interparticle friction coefficient. We verify directly that larger force-indeterminacy is accompanied by a more robust behavior against local perturbations. We also investigate the local indeterminacy of individual contact forces. The probability distribution of local indeterminacy changes its shape depending on friction. We find that local indeterminacy tends to be larger on force chains for intermediate friction. This correlation disappears in the large friction limit.Comment: 5 pages, 6 figure

    Limit quantum efficiency for violation of Clauser-Horne Inequality for qutrits

    Full text link
    In this paper we present the results of numerical calculations about the minimal value of detection efficiency for violating the Clauser - Horne inequality for qutrits. Our results show how the use of non-maximally entangled states largely improves this limit respect to maximally entangled ones. A stronger resistance to noise is also found.Comment: Phys. Rev. A in pres

    Delivery actuator for a transcervical sterilization device

    Get PDF
    The use of delivery systems in the human body for positioning and deploying implants, such as closure devices, dilation balloons, stents, coils and sterilization devices, are gaining more importance to preclude surgical incisions and general anesthesia. The majorities of the non-surgical medical devices are delivered in a low profile into human body form and subsequently require specialized operations for their deployment and release. An analogous procedure for permanent female sterilization is the transcervical approach that does not require either general anesthesia or surgical incision and uses a normal body passage. The objective of this paper is to detail the design, development and verification of an ergonomic actuator for a medical application. In particular, this actuator is designed for the deployment and release of an implant to achieve instant permanent female sterilization via the transcervical approach. This implant is deployed under hysteroscopic visualization and requires a sequence of rotary and linear operations for its deployment and release. More specifically, this manually operated actuator is a hand held device designed to transmit the required forces in a particular sequence to effect both implant deployment and release at a target location. In order to design the actuator and to investigate its mechanical behavior, a three-dimensional (3D) Computer Aided Design (CAD) model was developed and Finite Element Method (FEM) was used for simulations and optimization. Actuator validation was performed following a number of successful bench-top in-air deployments and in-vitro deployments in animal tissue and explanted human uteri. During these deployments it was observed that the actuator applied the required forces to the implant resulting in successful deployment. Initial results suggest that this actuator can be used single handedly during the deployment phase. The ongoing enhancement of this actuator is moving towards “first-in- man” clinical trials

    Covariant boost and structure functions of baryons in Gross-Neveu models

    Full text link
    Baryons in the large N limit of two-dimensional Gross-Neveu models are reconsidered. The time-dependent Dirac-Hartree-Fock approach is used to boost a baryon to any inertial frame and shown to yield the covariant energy-momentum relation. Momentum distributions are computed exactly in arbitrary frames and used to interpolate between the rest frame and the infinite momentum frame, where they are related to structure functions. Effects from the Dirac sea depend sensitively on the occupation fraction of the valence level and the bare fermion mass and do not vanish at infinite momentum. In the case of the kink baryon, they even lead to divergent quark and antiquark structure functions at x=0.Comment: 13 pages, 12 figures; v2: minor correction

    Pulsed energy-time entangled twin-photon source for quantum communication

    Full text link
    A pulsed source of energy-time entangled photon pairs pumped by a standard laser diode is proposed and demonstrated. The basic states can be distinguished by their time of arrival. This greatly simplifies the realization of 2-photon quantum cryptography, Bell state analyzers, quantum teleportation, dense coding, entanglement swapping, GHZ-states sources, etc. Moreover the entanglement is well protected during photon propagation in telecom optical fibers, opening the door to few-photon applications of quantum communication over long distances.Comment: 8 pages, 4 figure

    Collaborative hyperparameter tuning

    No full text
    International audienceHyperparameter learning has traditionally been a manual task because of the limited number of trials. Today's computing infrastructures allow bigger evaluation budgets, thus opening the way for algorithmic approaches. Recently, surrogate-based optimization was successfully applied to hyperparameter learning for deep belief networks and to WEKA classifiers. The methods combined brute force computational power with model building about the behavior of the error function in the hyperparameter space, and they could significantly improve on manual hyperparameter tuning. What may make experienced practitioners even better at hyperparameter optimization is their ability to generalize across similar learning problems. In this paper, we propose a generic method to incorporate knowledge from previous experiments when simultaneously tuning a learning algorithm on new problems at hand. To this end, we combine surrogate-based ranking and optimization techniques for surrogate-based collaborative tuning (SCoT). We demonstrate SCoT in two experiments where it outperforms standard tuning techniques and single-problem surrogate-based optimization

    On Conversational Agents in Information Systems Research: Analyzing the Past to Guide Future Work

    Get PDF
    Conversational agents (CA), i.e. software that interacts with its users through natural language, are becoming increasingly prevalent in everyday life as technological advances continue to significantly drive their capabilities. CA exhibit the potential to support and collaborate with humans in a multitude of tasks and can be used for innovation and automation across a variety of business functions, such as customer service or marketing and sales. Parallel to the increasing popularity in practice, IS researchers have engaged in studying a variety of aspects related to CA in the last few years, applying different research methods and producing different types of theories. In this paper, we review 36studies to assess the status quo of CA research in IS, identify gaps regarding both the studied aspects as well as applied methods and theoretical approaches, and propose directions for future work in this research area
    corecore