967 research outputs found

    Investigating the role of a novel primase-polymerase, PrimPol, in DNA damage tolerance in vertebrate cells

    Get PDF
    Genome duplication is an essential task our cells have to achieve prior to cell division, and requires a highly specialized replication machinery to ensure it is performed in an accurate and complete manner. DNA primase and polymerases are essential components of the replisome. Primases initiate DNA replication by synthesising short RNA primers that are then elongated by faithful and processive replicative DNA polymerases. However, both exogenous and endogenous agents can damage DNA and hinder progression of the replicative machinery. Translesion synthesis DNA polymerases assist in bypassing these DNA lesions in a process called DNA damage tolerance that enables chromosomal replication to proceed in in spite of damaged templates. This thesis details the characterisation of a novel eukaryotic DNA primase, coiled-coil domain containing protein (CCDC111), a member of the Archaeo Eukaryotic Primase (AEP) superfamily. Preliminary in vitro characterisation of CCDC111 demonstrated that the recombinant protein is capable of both DNA-dependant priming and polymerase activities, which is unprecedented for a eukaryotic polymerase, and it was therefore renamed Primase-polymerase (PrimPol). The aim of this thesis was to provide one of the first cellular characterisations of PrimPol by generating a knockout of the gene in avian DT40 cells and also depleting the protein in human cells using RNAi. In vivo evidence supports the involvement of this novel polymerase in replication fork progression following replicative stress, such as exposure to UV light, but also during unperturbed DNA replication. Work in this thesis also indicates a role for PrimPol in mitochondrial DNA maintenance. Together, the data presented here establish a role for PrimPol in DNA damage tolerance in avian and human cells

    Consistency Conditions for Branes at Orbifold Singularities

    Get PDF
    We discuss consistency conditions for branes at orbifold singularities. The conditions have a world-sheet interpretation in terms of tadpole cancellation and a space-time interpretation in terms of anomalies. As examples, we consider type II and type I branes on C2/ZMC^2/Z_M orbifolds. We give orientifold constructions of phases of type I or heterotic string theory, involving branches with extra tensor multiplets, which arise when small SO(32) instantons sit on orbifold singularities.Comment: harvmac, 14 pages, added reference

    PrimPol—A new polymerase on the block

    Get PDF
    The DNA-directed primase-polymerase PrimPol of the archaeo-eukaryotic primase superfamily represents an ancient solution to the many problems faced during genome duplication. This versatile enzyme is capable of initiating de novo DNA/RNA synthesis, DNA chain elongation, and has the capacity to bypass modifications that stall the replisome by trans-lesion synthesis or origin-independent re-priming, thus allowing discontinuous synthesis of the leading strand. Recent studies have shown that PrimPol is an important new player in replication fork progression in eukaryotic cells; this review summarizes our current understanding of PrimPol and highlights important questions that remain to be addressed

    Molecular dissection of the domain architecture and catalytic activities of human PrimPol

    Get PDF
    PrimPol is a primase–polymerase involved in nuclear and mitochondrial DNA replication in eukaryotic cells. Although PrimPol is predicted to possess an archaeo-eukaryotic primase and a UL52-like zinc finger domain, the role of these domains has not been established. Here, we report that the proposed zinc finger domain of human PrimPol binds zinc ions and is essential for maintaining primase activity. Although apparently dispensable for its polymerase activity, the zinc finger also regulates the processivity and fidelity of PrimPol's extension activities. When the zinc finger is disrupted, PrimPol becomes more promutagenic, has an altered translesion synthesis spectrum and is capable of faithfully bypassing cyclobutane pyrimidine dimer photolesions. PrimPol's polymerase domain binds to both single- and double-stranded DNA, whilst the zinc finger domain binds only to single-stranded DNA. We additionally report that although PrimPol's primase activity is required to restore wild-type replication fork rates in irradiated PrimPol−/− cells, polymerase activity is sufficient to maintain regular replisome progression in unperturbed cells. Together, these findings provide the first analysis of the molecular architecture of PrimPol, describing the activities associated with, and interplay between, its functional domains and defining the requirement for its primase and polymerase activities during nuclear DNA replication

    Effects of commercial apple varieties on human gut microbiota composition and metabolic output using an in vitro colonic model

    Get PDF
    Apples are a rich source of polyphenols and fiber. A major proportion of apple polyphenols escape absorption in the small intestine and together with non-digestible polysaccharides reach the colon, where they can serve as substrates for bacterial fermentation. Animal studies suggest a synergistic interaction between apple polyphenols and the soluble fiber pectin; however, the effects of whole apples on human gut microbiota are less extensively studied. Three commercial apple varieties-Renetta Canada, Golden Delicious and Pink Lady-were digested and fermented in vitro using a batch culture colonic model (pH 5.5-6.0, 37 °C) inoculated with feces from three healthy donors. Inulin and cellulose were used as a readily and a poorly fermentable plant fiber, respectively. Fecal microbiota composition was measured by 16S rRNA gene Illumina MiSeq sequencing (V3-V4 region) and Fluorescence in Situ Hybridization. Short chain fatty acids (SCFAs) and polyphenol microbial metabolites were determined. The three apple varieties significantly changed bacterial diversity, increased Actinobacteria relative abundance, acetate, propionate and total SCFAs (p < 0.05). Renetta Canada and Golden Delicious significantly decreased Bacteroidetes abundance and increased Proteobacteria proportion and bifidobacteria population (p < 0.05). Renetta Canada also increased Faecalibacterium prausnitzii, butyrate levels and polyphenol microbial metabolites (p < 0.05). Together, these data suggest that apples, particularly Renetta Canada, can induce substantial changes in microbiota composition and metabolic activity in vitro, which could be associated with potential benefits to human health. Human intervention studies are necessary to confirm these data and potential beneficial effects
    • …
    corecore