87 research outputs found

    Characterization of Laser Systems at 1550 nm Wavelength for Future Gravitational Wave Detectors

    Get PDF
    The continuous improvement of current gravitational wave detectors (GWDs) and the preparations for next generation GWDs place high demands on their stabilized laser sources. Some of the laser sources need to operate at laser wavelengths between 1.5 Ό\mum and 2.2 Ό\mum to support future detectors based on cooled silicon test masses for thermal noise reduction. We present detailed characterizations of different commercial low power seed laser sources and power amplifiers at the wavelength of 1550 nm with respect to performance parameters needed in GWDs. A combination with the most complete set of actuators was arranged as a master-oscillator power amplifier (MOPA), integrated into a stabilization environment and characterized. We present the results of this characterization that make this stabilized MOPA a highly relevant prototype for future GWDs as well as a low noise light source for other experiments in high precision metrology

    Quantum limit of different laser power stabilization schemes involving optical resonators

    Get PDF
    Three different laser power stabilization schemes are compared: a traditional power stabilization, a traditional one with subsequent optical resonator, and a power stabilization with the novel optical ac coupling technique. The performance of the schemes is evaluated using the theoretical quantum limit and the power stability achieved considering technical limitations. The scheme with optical ac coupling is superior to the other ones especially at high laser power levels that will be used in future interferometric gravitational wave detectors.DFG/EXC/QUES

    Characterization of optical systems for the ALPS II experiment

    Get PDF
    ALPS II is a light shining through a wall style experiment that will use the principle of resonant enhancement to boost the conversion and reconversion probabilities of photons to relativistic WISPs. This will require the use of long baseline low-loss optical cavities. Very high power build up factors in the cavities must be achieved in order to reach the design sensitivity of ALPS II. This necessitates a number of different sophisticated optical and control systems to maintain the resonance and ensure maximal coupling between the laser and the cavity. In this paper we report on the results of the characterization of these optical systems with a 20 m cavity and discuss the results in the context of ALPS II

    Optics mounting and alignment for the central optical bench of the dual cavity enhanced light-shining-through-a-wall experiment ALPS II

    Get PDF
    Any Light Particle Search II (ALPS II) is a light-shining-through-a-wall experiment seeking axion-like particles. ALPS II will feature two 120 m long linear optical cavities that are separated by a wall and support the same photon mode. The central optical bench at the core of the experiment will be equipped with a light-tight shutter and two planar mirrors for the cavities. We show that the mounting concept for ALPS II provides sufficient angular stability and verify that a simple autocollimator assisted alignment procedure for crucial components of the ALPS II optical cavities can lead to the required overlap of the cavity eigenmodes. Furthermore, we show that mounted quadrant photodiodes added to the optical bench can have sufficient stability to maintain this overlap even without a clear line of sight between the two optical cavities. © 2020 Optical Society of Americ

    Binary Black Hole Mergers in the First Advanced LIGO Observing Run

    Get PDF
    The first observational run of the Advanced LIGO detectors, from September 12, 2015 to January 19, 2016, saw the first detections of gravitational waves from binary black hole mergers. In this paper, we present full results from a search for binary black hole merger signals with total masses up to 100M⊙ and detailed implications from our observations of these systems. Our search, based on general-relativistic models of gravitational-wave signals from binary black hole systems, unambiguously identified two signals, GW150914 and GW151226, with a significance of greater than 5σ over the observing period. It also identified a third possible signal, LVT151012, with substantially lower significance and with an 87% probability of being of astrophysical origin. We provide detailed estimates of the parameters of the observed systems. Both GW150914 and GW151226 provide an unprecedented opportunity to study the two-body motion of a compact-object binary in the large velocity, highly nonlinear regime. We do not observe any deviations from general relativity, and we place improved empirical bounds on several high-order post-Newtonian coefficients. From our observations, we infer stellar-mass binary black hole merger rates lying in the range 9–240  Gpc−3 yr−1. These observations are beginning to inform astrophysical predictions of binary black hole formation rates and indicate that future observing runs of the Advanced detector network will yield many more gravitational-wave detections

    High power, single-frequency, monolithic fiber amplifier for the next generation of gravitational wave detectors

    Get PDF
    Low noise, high power single-frequency lasers and amplifiers are key components of interferometric gravitational wave detectors. One way to increase the detector sensitivity is to increase the power injected into the interferometers. We developed a fiber amplifier engineering prototype with a pump power limited output power of 200 W at 1064 nm. No signs of stimulated Brillouin scattering are observed at 200 W. At the maximum output power the polarization extinction ratio is above 19 dB and the fractional power in the fundamental transverse mode (TEM00) was measured to be 94.8 %. In addition, measurements of the frequency noise, relative power noise, and relative pointing noise were performed and demonstrate excellent low noise properties over the entire output power slope. In the context of single-frequency fiber amplifiers, the measured relative pointing noise below 100 Hz and the higher order mode content is, to the best of our knowledge, at 200 W the lowest ever measured. A long-term test of more than 695 h demonstrated stable operation without beam quality degradation. It is also the longest single-frequency fiber amplifier operation at 200 W ever reported. © 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

    Laser power stabilization via radiation pressure

    Get PDF
    This Letter reports the experimental realization of a novel, to the best of our knowledge, active power stabilization scheme in which laser power fluctuations are sensed via the radiation pressure driven motion they induce on a movable mirror. The mirror position and its fluctuations were determined by means of a weak auxiliary laser beam and a Michelson interferometer, which formed the in-loop sensor of the power stabilization feedback control system. This sensing technique exploits a nondemolition measurement, which can result in higher sensitivity for power fluctuations than direct, and hence destructive, detection. Here we used this new scheme in a proof-of-concept experiment to demonstrate power stabilization in the frequency range from 1 Hz to 10 kHz, limited at low frequencies by the thermal noise of the movable mirror at room temperature
    • 

    corecore