88 research outputs found

    Characterizations of Network Auctions and Generalizations of VCG

    Full text link
    With the growth of networks, promoting products through social networks has become an important problem. For auctions in social networks, items are needed to be sold to agents in a network, where each agent can bid and also diffuse the sale information to her neighbors. Thus, the agents' social relations are intervened with their bids in the auctions. In network auctions, the classical VCG mechanism fails to retain key properties. In order to better understand network auctions, in this paper, we characterize network auctions for the single-unit setting with respect to weak budget balance, individual rationality, incentive compatibility, efficiency, and other properties. For example, we present sufficient conditions for mechanisms to be efficient and (weakly) incentive compatible. With the help of these properties and new concepts such as rewards, participation rewards, and so on, we show how to design efficient mechanisms to satisfy incentive compatibility as much as possible, and incentive compatibility mechanisms to maximize the revenue. Our results provide insights into understanding auctions in social networks.Comment: To appear in ECAI 202

    Differentially Private Diffusion Auction: The Single-unit Case

    Full text link
    Diffusion auction refers to an emerging paradigm of online marketplace where an auctioneer utilises a social network to attract potential buyers. Diffusion auction poses significant privacy risks. From the auction outcome, it is possible to infer hidden, and potentially sensitive, preferences of buyers. To mitigate such risks, we initiate the study of differential privacy (DP) in diffusion auction mechanisms. DP is a well-established notion of privacy that protects a system against inference attacks. Achieving DP in diffusion auctions is non-trivial as the well-designed auction rules are required to incentivise the buyers to truthfully report their neighbourhood. We study the single-unit case and design two differentially private diffusion mechanisms (DPDMs): recursive DPDM and layered DPDM. We prove that these mechanisms guarantee differential privacy, incentive compatibility and individual rationality for both valuations and neighbourhood. We then empirically compare their performance on real and synthetic datasets

    Totalitarianism and geography: L.S. Berg and the defence of an academic discipline in the age of Stalin

    Get PDF
    In considering the complex relationship between science and politics, the article focuses upon the career of the eminent Russian scholar, Lev Semenovich Berg (1876–1950), one of the leading geographers of the Stalin period. Already before the Russian Revolution, Berg had developed a naturalistic notion of landscape geography which later appeared to contradict some aspects of Marxist–Leninist ideology. Based partly upon Berg's personal archive, the article discusses the effects of the 1917 revolution, the radical changes which Stalin's cultural revolution (from the late 1920s) brought upon Soviet science, and the attacks made upon Berg and his concept of landscape geography thereafter. The ways in which Berg managed to defend his notion of geography (sometimes in surprisingly bold ways) are considered. It is argued that geography's position under Stalin was different from that of certain other disciplines in that its ideological disputes may have been regarded as of little significance by the party leaders, certainly by comparison with its practical importance, thus providing a degree of ‘freedom’ for some geographers at least analogous to that which has been described by Weiner (1999. A little corner of freedom: Russian nature protection from Stalin to Gorbachev. Berkeley: University of California Press) for conservationists. It is concluded that Berg and others successfully upheld a concept of scientific integrity and limited autonomy even under Stalinism, and that, in an era of ‘Big Science’, no modernizing state could or can afford to emasculate these things entirely

    Stochastic electrotransport selectively enhances the transport of highly electromobile molecules

    Get PDF
    Nondestructive chemical processing of porous samples such as fixed biological tissues typically relies on molecular diffusion. Diffusion into a porous structure is a slow process that significantly delays completion of chemical processing. Here, we present a novel electrokinetic method termed stochastic electrotransport for rapid nondestructive processing of porous samples. This method uses a rotational electric field to selectively disperse highly electromobile molecules throughout a porous sample without displacing the low-electromobility molecules that constitute the sample. Using computational models, we show that stochastic electrotransport can rapidly disperse electromobile molecules in a porous medium. We apply this method to completely clear mouse organs within 1–3 days and to stain them with nuclear dyes, proteins, and antibodies within 1 day. Our results demonstrate the potential of stochastic electrotransport to process large and dense tissue samples that were previously infeasible in time when relying on diffusion.Simons Foundation. Postdoctoral FellowshipLife Sciences Research FoundationBurroughs Wellcome Fund (Career Awards at the Scientific Interface)Searle Scholars ProgramMichael J. Fox Foundation for Parkinson's ResearchUnited States. Defense Advanced Research Projects AgencyJPB FoundationNational Institutes of Health (U.S.)National Institutes of Health (U.S.) (Grant 1-U01-NS090473-01

    Connecting Rodent and Human Pharmacokinetic Models for the Design and Translation of Glucose-Responsive Insulin

    Get PDF
    Despite considerable progress, development of glucose-responsive insulins (GRIs) still largely depends on empirical knowledge and tedious experimentation-especially on rodents. To assist the rational design and clinical translation of the therapeutic, we present a Pharmacokinetic Algorithm Mapping GRI Efficacies in Rodents and Humans (PAMERAH) built upon our previous human model. PAMERAH constitutes a framework for predicting the therapeutic efficacy of a GRI candidate from its user-specified mechanism of action, kinetics, and dosage, which we show is accurate when checked against data from experiments and literature. Results from simulated glucose clamps also agree quantitatively with recent GRI publications. We demonstrate that the model can be used to explore the vast number of permutations constituting the GRI parameter space and thereby identify the optimal design ranges that yield desired performance. A design guide aside, PAMERAH more importantly can facilitate GRI's clinical translation by connecting each candidate's efficacies in rats, mice, and humans. The resultant mapping helps to find GRIs that appear promising in rodents but underperform in humans (i.e., false positives). Conversely, it also allows for the discovery of optimal human GRI dynamics not captured by experiments on a rodent population (false negatives). We condense such information onto a "translatability grid" as a straightforward, visual guide for GRI development
    • …
    corecore