65 research outputs found

    Mapeo Solar y Eólico del Paraguay

    Get PDF
    Utilizando fuentes de datos climáticos históricos, se procedió a realizar un análisis de las características de cada fuente y optar por las mejores alternativas para ser utilizadas en un posterior mapeo, priorizando aquellas de comprobada fiabilidad y precisión, o en su defecto, aplicar metodologías de comprobación.CONACYT – Consejo Nacional de Ciencia y TecnologíaPROCIENCI

    Rationale and Design of JenaMACS—Acute Hemodynamic Impact of Ventricular Unloading Using the Impella CP Assist Device in Patients with Cardiogenic Shock

    Get PDF
    Introduction: Cardiogenic shock due to myocardial infarction or heart failure entails a reduction in end organ perfusion. Patients who cannot be stabilized with inotropes and who experience increasing circulatory failure are in need of an extracorporeal mechanical support system. Today, small, percutaneously implantable cardiac assist devices are available and might be a solution to reduce mortality and complications. A temporary, ventricular, continuous flow propeller pump using magnetic levitation (Impella ® ) has been approved for that purpose. Methods and Study Design: JenaMACS (Jena Mechanical Assist Circulatory Support) is a monocenter, proof-of-concept study to determine whether treatment with an Impella CP ® leads to improvement of hemodynamic parameters in patients with cardiogenic shock requiring extracorporeal, hemodynamic support. The primary outcomes of JenaMACS are changes in hemodynamic parameters measured by pulmonary artery catheterization and changes in echocardiographic parameters of left and right heart function before and after Impella ® implantation at different support levels after 24 h of support. Secondary outcome measures are hemodynamic and echocardiographic changes over time as well as clinical endpoints such as mortality or time to hemodynamic stabilization. Further, laboratory and clinical safety endpoints including severe bleeding, stroke, neurological outcome, peripheral ischemic complications and occurrence of sepsis will be assessed. JenaMACS addresses essential questions of extracorporeal, mechanical, cardiac support with an Impella CP ® device in patients with cardiogenic shock. Knowledge of the acute and subacute hemodynamic and echocardiographic effects may help to optimize therapy and improve the outcome in those patients. Conclusion: The JenaMACS study will address essential questions of extracorporeal, mechanical, cardiac support with an Impella CP ® assist device in patients with cardiogenic shock. Knowledge of the acute and subacute hemodynamic and echocardiographic effects may help to optimize therapy and may improve outcome in those patients. Ethics and Dissemination: The protocol was approved by the institutional review board and ethics committee of the University Hospital of Jena. Written informed consent will be obtained from all participants of the study. The results of this study will be published in a renowned international medical journal, irrespective of the outcomes of the study. Strengths and Limitations: JenaMACS is an innovative approach to characterize the effect of additional left ventricular mechanical unloading during cardiogenic shock via a minimally invasive cardiac assist system (Impella CP ® ) 24 h after onset and will provide valuable data for acute interventional strategies or future prospective trials. However, JenaMACS, due to its proof-of-concept design, is limited by its single center protocol, with a small sample size and without a comparison group

    The neuroscience of sadness: A multidisciplinary synthesis and collaborative review

    Get PDF
    Sadness is typically characterized by raised inner eyebrows, lowered corners of the mouth, reduced walking speed, and slumped posture. Ancient subcortical circuitry provides a neuroanatomical foundation, extending from dorsal periaqueductal grey to subgenual anterior cingulate, the latter of which is now a treatment target in disorders of sadness. Electrophysiological studies further emphasize a role for reduced left relative to right frontal asymmetry in sadness, underpinning interest in the transcranial stimulation of left dorsolateral prefrontal cortex as an antidepressant target. Neuroimaging studies – including meta-analyses – indicate that sadness is associated with reduced cortical activation, which may contribute to reduced parasympathetic inhibitory control over medullary cardioacceleratory circuits. Reduced cardiac control may – in part – contribute to epidemiological reports of reduced life expectancy in affective disorders, effects equivalent to heavy smoking. We suggest that the field may be moving toward a theoretical consensus, in which different models relating to basic emotion theory and psychological constructionism may be considered as complementary, working at different levels of the phylogenetic hierarchy.Fil: Arias, Juan A.. Swansea University; Reino Unido. Universidad de Santiago de Compostela; EspañaFil: Williams, Claire. Swansea University; Reino UnidoFil: Raghvani, Rashmi. Swansea University; Reino UnidoFil: Aghajani, Moji. No especifíca;Fil: Baez, Sandra. Universidad de los Andes; ColombiaFil: Belzung, Catherine. Universite de Tours; FranciaFil: Booij, Linda. Concordia University Montreal; CanadáFil: Busatto, Geraldo. Universidade de Sao Paulo; BrasilFil: Chiarella, Julian. Concordia University Montreal; CanadáFil: Fu, Cynthia. University Of East London; Reino UnidoFil: Ibañez, Agustin Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Neurociencia Cognitiva y Traslacional. Fundación Ineco Rosario Sede del Incyt | Instituto de Neurología Cognitiva. Instituto de Neurociencia Cognitiva y Traslacional. Fundación Ineco Rosario Sede del Incyt | Fundación Favaloro. Instituto de Neurociencia Cognitiva y Traslacional. Fundación Ineco Rosario Sede del Incyt; Argentina. Universidad Adolfo Ibañez; Chile. Universidad Autónoma del Caribe; ColombiaFil: Liddell, Belinda J.. University of New South Wales; AustraliaFil: Lowe, Leroy. No especifíca;Fil: Penninx, Brenda W.J.H.. No especifíca;Fil: Rosa, Pedro. Universidade de Sao Paulo; BrasilFil: Kemp, Andrew H.. Universidade de Sao Paulo; Brasil. Swansea University; Reino Unid

    Pan-cancer analysis of whole genomes identifies driver rearrangements promoted by LINE-1 retrotransposition

    Get PDF
    About half of all cancers have somatic integrations of retrotransposons. Here, to characterize their role in oncogenesis, we analyzed the patterns and mechanisms of somatic retrotransposition in 2,954 cancer genomes from 38 histological cancer subtypes within the framework of the Pan-Cancer Analysis of Whole Genomes (PCAWG) project. We identified 19,166 somatically acquired retrotransposition events, which affected 35% of samples and spanned a range of event types. Long interspersed nuclear element (LINE-1; L1 hereafter) insertions emerged as the first most frequent type of somatic structural variation in esophageal adenocarcinoma, and the second most frequent in head-and-neck and colorectal cancers. Aberrant L1 integrations can delete megabase-scale regions of a chromosome, which sometimes leads to the removal of tumor-suppressor genes, and can induce complex translocations and large-scale duplications. Somatic retrotranspositions can also initiate breakage–fusion–bridge cycles, leading to high-level amplification of oncogenes. These observations illuminate a relevant role of L1 retrotransposition in remodeling the cancer genome, with potential implications for the development of human tumors
    corecore