7 research outputs found

    Genetic Diversity of Imipenem-Resistant Acinetobacter baumannii Infections at an Intensive Care Unit

    No full text
    Introduction. Imipenem-resistant Acinetobacter baumannii (IRAB) represents a major clinical threat. Dissemination in critical care areas necessitates effective action measures including genotyping tools to study the clonality of these strains and trace their origin. The main aim of this study is to assess the genetic relatedness between IRAB isolates in our institution intensive care units (ICU) which are at a particular risk of outbreaks. Methods. Nonreplicate IRAB strains were serially collected over 3 years period (January 2016–December 2018) from patients admitted to the ICU. The isolates were phenotypically identified by a matrix-assisted laser desorption/ionization time-of-flight- (MALDI-TOF-) based system (VITEK MS), and their susceptibility was tested by the phenotypic-based VITEK 2 system. Molecular fingerprinting was performed by enterobacterial repetitive intergenic consensus (ERIC-PCR) followed by hierarchal clustering. The patterns were analysed by the software of BioNumerics package version 7.6.3 (Applied Maths, Belgium). Results. A total of eighty IRAB were isolated from 31 colonization and 59 infection sites in patients admitted to the ICU. Sixty-two samples were respiratory in origin (77.5%). The generated dendrogram revealed distinct patterns for majority (95%) of the strains. Meropenem maintained activity against 43.8% of the imipenem-resistant A. baumannii. Conclusion. Meropenem can be a therapeutic option for imipenem-resistant A. baumannii. The banding patterns propose that multiple IRAB strains are circulating in the intensive care units of the institution. Drivers for this diversity need to be evaluated including antimicrobial consumption

    <i>Syzygium cumini</i> (L.) Extract-Derived Green Titanium Dioxide Nanoparticles Induce Caspase-Dependent Apoptosis in Hepatic Cancer Cells

    No full text
    An aqueous extract of Syzygium cumini seeds was utilized to green synthesize titanium dioxide nanoparticles (TiO2 NPs). UV-Visible, DLS, FTIR, XRD, FESEM, TEM, SAED, EDAX, and photoluminescence spectroscopy techniques were employed to characterize the prepared TiO2 nanoparticles. The rutile crystal structure of TiO2 NPs was revealed by XRD study. The TEM and FESEM images of the TiO2 NPs revealed an average particle size of 50–100 nm. We employed EDAX to investigate the elemental compositions of TiO2 NPs. The O-Ti-O stretching bands appeared in the FTIR spectrum of TiO2 NPs at wavenumbers of 495 cm−1. The absorption edge peaks of TiO2 NPs were found in the UV-vis spectra at 397 nm. The MTT study revealed that TiO2 NPs effectively inhibited the growth of liver cancer Hep3 and Hep-G2 cells. The results of the corresponding fluorescent staining assays showed that TiO2 NPs significantly increased ROS generation, decreased MMP, and induced apoptosis in both liver cancer Hep3 and Hep-G2 cells. TiO2 nanoparticles lessened SOD, CAT, and GSH levels while augmenting MDA contents in Hep3 and Hep-G2 cells. In both Hep3 and Hep-G2 cells treated with TiO2 NPs, the Bax, CytC, p53, caspase-3, -8, and -9 expressions were remarkably augmented, while Bcl-2 expression was reduced. Overall, these findings revealed that formulated TiO2 NPs treatment considerably inhibited growth and triggered apoptosis in Hep3 and HepG2 cells

    Pluronic-F-127-Passivated SnO<sub>2</sub> Nanoparticles Derived by Using <i>Polygonum cuspidatum</i> Root Extract: Synthesis, Characterization, and Anticancer Properties

    No full text
    Nanotechnology has emerged as the most popular research topic with revolutionary applications across all scientific disciplines. Tin oxide (SnO2) has been gaining considerable attention lately owing to its intriguing features, which can be enhanced by its synthesis in the nanoscale range. The establishment of a cost-efficient and ecologically friendly procedure for its production is the result of growing concerns about human well-being. The novelty and significance of this study lie in the fact that the synthesized SnO2 nanoparticles have been tailored to have specific properties, such as size and morphology. These properties are crucial for their applications. Moreover, this study provides insights into the synthesis process of SnO2 nanoparticles, which can be useful for developing efficient and cost-effective methods for large-scale production. In the current study, green Pluronic-coated SnO2 nanoparticles (NPs) utilizing the root extracts of Polygonum cuspidatum have been formulated and characterized by several methods such as UV–visible, Fourier transform infrared spectroscopy (FTIR), energy dispersive X-ray (EDAX), transmission electron microscope (TEM), field emission-scanning electron microscope (FE-SEM), X-ray diffraction (XRD), photoluminescence (PL), and dynamic light scattering (DLS) studies. The crystallite size of SnO2 NPs was estimated to be 45 nm, and a tetragonal rutile-type crystalline structure was observed. FESEM analysis validated the NPs’ spherical structure. The cytotoxic potential of the NPs against HepG2 cells was assessed using the in vitro MTT assay. The apoptotic efficiency of the NPs was evaluated using a dual-staining approach. The NPs revealed substantial cytotoxic effects against HepG2 cells but failed to exhibit cytotoxicity in different liver cell lines. Furthermore, dual staining and flow cytometry studies revealed higher apoptosis in NP-treated HepG2 cells. Nanoparticle treatment also inhibited the cell cycle at G0/G1 stage. It increased oxidative stress and promoted apoptosis by encouraging pro-apoptotic protein expression in HepG2 cells. NP treatment effectively blocked the PI3K/Akt/mTOR axis in HepG2 cells. Thus, green Pluronic-F-127-coated SnO2 NPs exhibits enormous efficiency to be utilized as an talented anticancer agent

    Manganese and copper-coated nickel oxide nanoparticles synthesized from Carica papaya leaf extract induce antimicrobial activity and breast cancer cell death by triggering mitochondrial caspases and p53

    No full text
    In the present work, manganese–copper co-infused nickel oxide nanoparticles (MnCu co-doped NiO NPs) were formulated via a green process using Carica papaya extract. The MnCu co-doped NiO NPs were characterized by X-ray diffraction (XRD), UV–Vis, Fourier transform infrared, field emission scanning electron microscope, energy dispersive X-ray analysis, and photoluminescence (PL) spectrum. The XRD pattern demonstrated that synthesized MnCu co-doped NiO NPs exhibit cubic structure. On the PL spectrum, various surface defects were identified. MnCu co-doped NiO NPs exhibited ferromagnetic properties at 37°C. The antimicrobial activity of green synthesis MnCu co-doped NiO NPs against human pathogens (Escherichia coli, Streptococcus pneumoniae, Bacillus megaterium, Bacillus subtilis, Shigella dysenteriae, Pseudomonas aeruginosa) and Candida albicans as fungal strains were demonstrated. The MnCu co-doped NiO NPs treatment considerably reduced MDA-MB-231 cell viability while not disturbing HBL-100 cell viability. Different fluorescent staining analyses revealed that MnCu co-doped NiO NPs induced nuclear and mitochondrial damage to improve free radical production, altering mitochondrial membrane protein potential, which led to apoptotic cell death in MDA-MB-231 cells. The MnCu co-doped NiO NP treatment enhanced pro-apoptotic protein expression and inhibited the cell cycle at the S phase in MDA-MB-231 cells. This makes it easy, cheap, and environmentally friendly to make MnCu co-doped NiO NPs using C. papaya extract, which has excellent antimicrobial properties

    Enhanced apoptotic activity of Pluronic F127 polymer-encapsulated chlorogenic acid nanoparticles through the PI3K/Akt/mTOR signaling pathway in liver cancer cells and in vivo toxicity studies in zebrafish

    No full text
    In this study, chlorogenic acid nanoparticles encapsulated in Pluronic F127 polymer were synthesized and characterized to determine if they could treat human liver cancer. The nanoparticles were synthesized using standard procedures and characterized using physical and biological techniques such as X-ray diffraction, Fourier transform infrared spectroscopy, UV-Vis, dynamic light scattering, Photoluminescence, scanning electron microscopy, and transmission electron microscopy. The anticancer effects were assessed using MTT analysis, acridine orange/ethidium bromide, reactive oxygen species (ROS), COMET assay, annexin-V/FITC, cell cycle analysis, and expression of marker genes against HepG2 cell lines. The results showed significant cytotoxicity, apoptosis induction, and increased ROS production in treated cells compared to control cells. The nanoparticles also activated the apoptotic cascade and regulated the PI3K/AKT/mTOR pathways. The nanocomposites exhibited unique characteristics such as anticancer efficacy in vitro. Further research was conducted using zebrafish to model hematological parameters, liver enzymes, and histopathology to study effectiveness. Green-synthesized Pluronic F127–chlorogenic acid nanoparticles can be considered potential cancer therapy agents

    Modulation of immune cum inflammatory pathway by earthworm granulation tissue extract in wound healing of diabetic rabbit model

    No full text
    Regeneration is a rare occurrence in the animal kingdom, but the earthworm stands out as a remarkable example of this phenomenon. Recent research has highlighted the promising wound healing properties of extracts derived from earthworms. Therefore, we propose that earthworm granulation tissue extract (EGTE) may facilitate wound healing by regulating immune responses in a rabbit diabetic wound model. Electron microscopy reveals that 70 % EGTE possesses noteworthy porosity with spherical to irregularly oval configuration. Gas chromatography–mass spectrometry (GC–MS) Characterization of EGTE revealed higher levels of ergosta-5,7,22-trien-3-ol, (3. beta.,22E). In-Vitro studies revealed significant anti-oxidant, anti-inflammatory and anti-bacterial properties in dose dependent manner. Likewise, cytotoxicity assessments reveal that 70 % EGTE exhibits minimal harm to cells while displaying substantial antioxidant and anti-inflammatory activities. For In-Vivo studies excision wounds were created on the dorsal regions of the experimental animals and were divided as Group I (50 % EGTE), Group II (70 % EGTE), Group III (vehicle) and Group IV (distilled water). Over a 21-day observation period 70 % EGTE facilitated the early healing of wounds in the experimental animals, evident through prompt wound closure, granulation tissue formation, increased DNA content, enhanced tensile strength of the wound area and enhanced the expression/synthesis of wound healing markers/proteins. From these results it can be postulated that EGTE accelerates wound healing by immune modulation, dampening of inflammatory pathway and enhanced expression of growth markers. Henceforth making it promising candidate for therapeutic use in diabetic wound healing

    SARS-CoV-2 vaccination modelling for safe surgery to save lives: data from an international prospective cohort study

    No full text
    Background: Preoperative SARS-CoV-2 vaccination could support safer elective surgery. Vaccine numbers are limited so this study aimed to inform their prioritization by modelling. Methods: The primary outcome was the number needed to vaccinate (NNV) to prevent one COVID-19-related death in 1 year. NNVs were based on postoperative SARS-CoV-2 rates and mortality in an international cohort study (surgical patients), and community SARS-CoV-2 incidence and case fatality data (general population). NNV estimates were stratified by age (18-49, 50-69, 70 or more years) and type of surgery. Best- and worst-case scenarios were used to describe uncertainty. Results: NNVs were more favourable in surgical patients than the general population. The most favourable NNVs were in patients aged 70 years or more needing cancer surgery (351; best case 196, worst case 816) or non-cancer surgery (733; best case 407, worst case 1664). Both exceeded the NNV in the general population (1840; best case 1196, worst case 3066). NNVs for surgical patients remained favourable at a range of SARS-CoV-2 incidence rates in sensitivity analysis modelling. Globally, prioritizing preoperative vaccination of patients needing elective surgery ahead of the general population could prevent an additional 58 687 (best case 115 007, worst case 20 177) COVID-19-related deaths in 1 year. Conclusion: As global roll out of SARS-CoV-2 vaccination proceeds, patients needing elective surgery should be prioritized ahead of the general population
    corecore