180 research outputs found

    Recent Advances and the Potential for Clinical Use of Autofluorescence Detection of Extra-Ophthalmic Tissues

    Get PDF
    The autofluorescence (AF) characteristics of endogenous fluorophores allow the label-free assessment and visualization of cells and tissues of the human body. While AF imaging (AFI) is well-established in ophthalmology, its clinical applications are steadily expanding to other disciplines. This review summarizes clinical advances of AF techniques published during the past decade. A systematic search of the MEDLINE database and Cochrane Library databases was performed to identify clinical AF studies in extra-ophthalmic tissues. In total, 1097 articles were identified, of which 113 from internal medicine, surgery, oral medicine, and dermatology were reviewed. While comparable technological standards exist in diabetology and cardiology, in all other disciplines, comparability between studies is limited due to the number of differing AF techniques and non-standardized imaging and data analysis. Clear evidence was found for skin AF as a surrogate for blood glucose homeostasis or cardiovascular risk grading. In thyroid surgery, foremost, less experienced surgeons may benefit from the AF-guided intraoperative separation of parathyroid from thyroid tissue. There is a growing interest in AF techniques in clinical disciplines, and promising advances have been made during the past decade. However, further research and development are mandatory to overcome the existing limitations and to maximize the clinical benefits

    Perioperative Pleural Drainage in Liver Transplantation: A Retrospective Analysis from a High-Volume Liver Transplant Center

    Get PDF
    BACKGROUND Pleural effusions represent a common complication after liver transplantation (LT) and chest drain (CD) placement is frequently necessary. MATERIAL AND METHODS In this retrospective cohort study, adult LT recipients between 2009 and 2016 were analyzed for pleural effusion formation and its treatment within the first 10 postoperative days. The aim of the study was to compare different settings of CD placement with regard to intervention-related complications. RESULTS Overall, 597 patients met the inclusion criteria, of which 361 patients (60.5%) received at least 1 CD within the study period. Patients with a MELD >25 were more frequently affected (75.7% versus 56.0%, P<0.001). Typically, CDs were placed in the intensive care unit (ICU) (66.8%) or in the operating room (14.1% during LT, 11.5% in the context of reoperations). In total, 97.0% of the patients received a right-sided CD, presumably caused by local irritations. Approximately one-third (35.4%) of ICU-patients required pre-interventional optimization of coagulation. Of the 361 patients receiving a CD, 15 patients (4.2%) suffered a post-interventional hemorrhage and 6 patients (1.4%) had a pneumothorax requiring further treatment. Less complications were observed when the CD was performed in the operating room compared to the ICU: 1 out 127 patients (0.8%) versus 20 out of 332 patients (6.0%); P=0.016. CONCLUSIONS CD placement occurring in the operating room was associated with fewer complications in contrast to placement occurring in the ICU. Planned CD placement in the course of surgery might be favorable in high-risk patients

    Expression Analysis of Fibronectin Type III Domain-Containing (FNDC) Genes in Inflammatory Bowel Disease and Colorectal Cancer

    Get PDF
    Background. Fibronectin type III domain-containing (FNDC) proteins fulfill manifold functions in tissue development and regulation of cellular metabolism. FNDC4 was described as anti-inflammatory factor, upregulated in inflammatory bowel disease (IBD). FNDC signaling includes direct cell-cell interaction as well as release of bioactive peptides, like shown for FNDC4 or FNDC5. The G-protein-coupled receptor 116 (GPR116) was found as a putative FNDC4 receptor. We here aim to comprehensively analyze the mRNA expression of FNDC1, FNDC3A, FNDC3B, FNDC4, FNDC5, and GPR116 in nonaffected and affected mucosal samples of patients with IBD or colorectal cancer (CRC). Methods. Mucosa samples were obtained from 30 patients undergoing diagnostic colonoscopy or from surgical resection of IBD or CRC. Gene expression was determined by quantitative real-time PCR. In addition, FNDC expression data from publicly available Gene Expression Omnibus (GEO) data sets (GDS4296, GDS4515, and GDS5232) were analyzed. Results. Basal mucosal expression revealed higher expression of FNDC3A and FNDC5 in the ileum compared to colonic segments. FNDC1 and FNDC4 were significantly upregulated in IBD. None of the investigated FNDCs was differentially expressed in CRC, just FNDC3A trended to be upregulated. The GEO data set analysis revealed significantly downregulated FNDC4 and upregulated GPR116 in microsatellite unstable (MSI) CRCs. The expression of FNDCs and GPR116 was independent of age and sex. Conclusions. FNDC1 and FNDC4 may play a relevant role in the pathobiology of IBD, but none of the investigated FNDCs is regulated in CRC. GPR116 may be upregulated in advanced or MSI CRC. Further studies should validate the altered FNDC expression results on protein levels and examine the corresponding functional consequences

    Numerical Simulation of a Model Spray Flame under MILD conditions using Stochastic Upstream Flow and Temperature Forcing

    Get PDF
    Numerical simulations of the Delft Spray in Hot Co-flow (DSHC) flame are presented, in order to aid the understanding of reacting multiphase flows under moderate or low-oxygen dilution (MILD) conditions. The test case consists of a single swirled pressure atomizer installed in the center of a cylindrical hot co-flow, operated with ethanol fuel. A large variety of experimental data is available for the burner’s MILD combustion configuration. Here, the particular H-II case is studied. Three different modelling approaches are employed, an unsteady RANS simulation and two scale-resolving methods, namely LES (Large Eddy Simulation) and SAS-SST (Scale Adaptive Simulation) in combination with a Shear Stress Transport turbulence model. Here, for the scale resolving SAS and LES, transient inflow boundary conditions are necessary in order to propagate turbulent flow and temperature structures into the computational domain, supporting the evolution of a full turbulent energy cascade. However, preliminary simulations have shown that due to the low Reynolds number of the co-flow, artificially imposed spatial and temporal turbulent fluctuations of temperature and velocity field are subject to strong artificial decay, prior to reaching the actual combustion zone. Therefore, a simplified stochastic forcing approach based on a first order Langevin model is adopted, reducing the boundary condition to a time dependent function which generates time-coherent structures featuring turbulent decay in time. The accurate implementation of the methodology is verified by means of analytical solutions and validated with the Delft Spray flame test case
    • …
    corecore