271 research outputs found

    Correlated detection of neutral and charged fragments in collision induced fragmentation of molecular clusters

    No full text
    accepté dans International Journal of Mass SpectrometryWe report on collision induced fragmentation of isolated molecular nanosystems studied with an event by event detection technique including the correlated detection of both neutral and charged fragments. This work focuses on the dissociation induced by collisional excitation without ionisation and electron-capture. Two molecular cluster cations are investigated: the collision of protonated hydrogen clusters at 60keV/amu with helium targets and that of protonated water clusters at 8keV with an argon gas. In addition to the molecular evaporation process the dissociation channel leading to the production of the H3+ or H3O+ molecular cations (loss of all the molecules) is observed with an unexpected abundance. The cross section for the production of these cations is observed to increase with the number of molecules in the cluster. Such an increase cannot be associated with the direct collisional excitation of the cation core of the cluster

    Renormalization of the singular attractive 1/r41/r^4 potential

    Full text link
    We study the radial Schr\"odinger equation for a particle of mass mm in the field of a singular attractive g2/r4g^2/{r^4} potential with particular emphasis on the bound states problem. Using the regularization method of Beane \textit{et al.}, we solve analytically the corresponding ``renormalization group flow" equation. We find in agreement with previous studies that its solution exhibits a limit cycle behavior and has infinitely many branches. We show that a continuous choice for the solution corresponds to a given fixed number of bound states and to low energy phase shifts that vary continuously with energy. We study in detail the connection between this regularization method and a conventional method modifying the short range part of the potential with an infinitely repulsive hard core. We show that both methods yield bound states results in close agreement even though the regularization method of Beane \textit{et al.} does not include explicitly any new scale in the problem. We further illustrate the use of the regularization method in the computation of electron bound states in the field of neutral polarizable molecules without dipole moment. We find the binding energy of s-wave polarization bound electrons in the field of C60_{60} molecules to be 17 meV for a scattering length corresponding to a hard core radius of the size of the molecule radius (3.37\sim 3.37 \AA). This result can be further compared with recent two-parameter fits using the Lennard-Jones potential yielding binding energies ranging from 3 to 25 meV.Comment: 8 page

    Charge-Transfer Induced Dissociation in the H+(H2O)3-Ar collisions observed with the COINTOF mass spectrometer

    No full text
    Electron-capture in collisions of singly charged protonated water cluster H+(H2O)3, ions with Ar atoms is studied at the impact energy of 8 keV in the frame of the COrrelated Ion and Neutral fragments Time-Of-Flight, COINTOF, technique. In contrast to methods based only on the detection of the charged fragments, dissociation induced by collisional-excitation and electron-capture induced dissociation can be simultaneously recorded in the present set-up. Time of flight measurement of both neutral and corresponding charged species resulting from the charge-exchange process leads to the direct observation of the dissociation of the neutralized protonated water cluster. Thus, the present COINTOF method provides new valuable insights into the collision processes through the detection of produced neutral fragments. Moreover, it opens new possibilities to measure kinetic energy release also in the dissociation of the produced neutrals, which is our future endeavour in the development of the presented COINTOF set up

    A novel "Correlated Ion and Neutral Time Of Flight" Method: event-by-event detection of neutral and charged fragments in Collision Induced Dissociation (CID) of mass selected ions

    No full text
    accepté dans Rev. Sci. Instrum.A new mass spectrometric MS-MS method based on Time Of Fight measurements performed on an event-by-event detection technique is presented. This "COrrelated Ion and Neutral Time of Flight (COINTOF)" method allows to explore CID fragmentation processes by directly identifying not only all ions and neutral fragments produced but also their arrival time correlations within each single fragmentation event from a dissociating molecular ion. This constitutes a new step in the characterization of molecular ions. The method will be illustrated here for a prototypical case involving Collision Induced Dissociation (CID) of protonated water clusters H+(H2O)n=1-5 upon collisions with argon atoms

    Effective Field Theory Program for Conformal Quantum Anomalies

    Full text link
    The emergence of conformal states is established for any problem involving a domain of scales where the long-range, SO(2,1) conformally invariant interaction is applicable. Whenever a clear-cut separation of ultraviolet and infrared cutoffs is in place, this renormalization mechanism produces binding in the strong-coupling regime. A realization of this phenomenon, in the form of dipole-bound anions, is discussed.Comment: 15 pages. Expanded, with additional calculational details. To be published in Phys. Rev.

    Structure and singly occupied molecular orbital analysis of anionic tautomers of guanine

    Get PDF
    Recently we reported the discovery of adiabatically bound anions of guanine which might be involved in the processes of DNA damage by low-energy electrons and in charge transfer through DNA. These anions correspond to some tautomers that have been ignored thus far. They were identified using a hybrid quantum mechanical-combinatorial approach in which an energy-based screening was performed on the library of 499 tautomers with their relative energies calculated with quantum chemistry methods. In the current study we analyze the adiabatically bound anions of guanine in two aspects: 1) the geometries and excess electron distributions are analyzed and compared with anions of the most stable neutrals to identify the sources of stability; 2) the chemical space of guanine tautomers is explored to verify if these new tautomers are contained in a particular subspace of the tautomeric space. The first task involves the development of novel approaches – the quantum chemical data like electron density, orbital and information on its bonding/antibonding character are coded into holograms and analyzed using chemoinformatics techniques. The second task is completed using substructure analysis and clustering techniques performed on molecules represented by 2D fingerprints. The major conclusion is that the high stability of adiabatically bound anions originates from the bonding character of the pi orbital occupied by the excess electron. This compensates for the antibonding character that usually causes significant buckling of the ring. Also the excess electron is more homogenously distributed over both rings than in the case of anions of the most stable neutral species. In terms of 2D substructure, the most stable anionic tautomers generally have additional hydrogen atoms at C8 and/or C2 and they don’t have hydrogen atoms attached to C4, C5 and C6. They also form an “island of stability” in the tautomeric space of guanine

    Spin-dependent effective interactions for halo nuclei

    Get PDF
    We discuss the spin-dependence of the effective two-body interactions appropriate for three-body computations. The only reasonable choice seems to be the fine and hyperfine interactions known for atomic electrons interacting with the nucleus. One exception is the nucleon-nucleon interaction imposing a different type of symmetry. We use the two-neutron halo nucleus 11Li as illustration. We demonstrate that models with the wrong spin-dependence are basically without predictive power. The Pauli forbidden core and valence states must be consistently treated.Comment: TeX file, 6 pages, 3 postscript figure

    Positron-molecule interactions: resonant attachment, annihilation, and bound states

    Get PDF
    This article presents an overview of current understanding of the interaction of low-energy positrons with molecules with emphasis on resonances, positron attachment and annihilation. Annihilation rates measured as a function of positron energy reveal the presence of vibrational Feshbach resonances (VFR) for many polyatomic molecules. These resonances lead to strong enhancement of the annihilation rates. They also provide evidence that positrons bind to many molecular species. A quantitative theory of VFR-mediated attachment to small molecules is presented. It is tested successfully for selected molecules (e.g., methyl halides and methanol) where all modes couple to the positron continuum. Combination and overtone resonances are observed and their role is elucidated. In larger molecules, annihilation rates from VFR far exceed those explicable on the basis of single-mode resonances. These enhancements increase rapidly with the number of vibrational degrees of freedom. While the details are as yet unclear, intramolecular vibrational energy redistribution to states that do not couple directly to the positron continuum appears to be responsible for these enhanced annihilation rates. Downshifts of the VFR from the vibrational mode energies have provided binding energies for thirty species. Their dependence upon molecular parameters and their relationship to positron-atom and positron-molecule binding energy calculations are discussed. Feshbach resonances and positron binding to molecules are compared with the analogous electron-molecule (negative ion) cases. The relationship of VFR-mediated annihilation to other phenomena such as Doppler-broadening of the gamma-ray annihilation spectra, annihilation of thermalized positrons in gases, and annihilation-induced fragmentation of molecules is discussed.Comment: 50 pages, 40 figure

    Electron attachment-induced DNA single-strand breaks at the pyrimidine sites

    Get PDF
    To elucidate the contribution of pyrimidine in DNA strand breaks caused by low-energy electrons (LEEs), theoretical investigations of the LEE attachment-induced C3′–O3′, and C5′–O5′ σ bond as well as N-glycosidic bond breaking of 2′-deoxycytidine-3′,5′-diphosphate and 2′-deoxythymidine-3′,5′-diphosphate were performed using the B3LYP/DZP++ approach. The base-centered radical anions are electronically stable enough to assure that either the C–O or glycosidic bond breaking processes might compete with the electron detachment and yield corresponding radical fragments and anions. In the gas phase, the computed glycosidic bond breaking activation energy (24.1 kcal/mol) excludes the base release pathway. The low-energy barrier for the C3′–O3′ σ bond cleavage process (∼6.0 kcal/mol for both cytidine and thymidine) suggests that this reaction pathway is the most favorable one as compared to other possible pathways. On the other hand, the relatively low activation energy barrier (∼14 kcal/mol) for the C5′–O5′ σ bond cleavage process indicates that this bond breaking pathway could be possible, especially when the incident electrons have relatively high energy (a few electronvolts). The presence of the polarizable medium greatly increases the activation energies of either C–O σ bond cleavage processes or the N-glycosidic bond breaking process. The only possible pathway that dominates the LEE-induced DNA single strands in the presence of the polarizable surroundings (such as in an aqueous solution) is the C3′–O3′ σ bond cleavage (the relatively low activation energy barrier, ∼13.4 kcal/mol, has been predicted through a polarizable continuum model investigation). The qualitative agreement between the ratio for the bond breaks of C5′–O5′, C3′–O3′ and N-glycosidic bonds observed in the experiment of oligonucleotide tetramer CGAT and the theoretical sequence of the bond breaking reaction pathways have been found. This consistency between the theoretical predictions and the experimental observations provides strong supportive evidences for the base-centered radical anion mechanism of the LEE-induced single-strand bond breaking around the pyrimidine sites of the DNA single strands

    Investigation of activation energies for dissociation of host-guest complexes in the gas phase using low-energy collision induced dissociation

    Get PDF
    International audienceA low-energy collision induced dissociation CID (low-energy CID) approach that can determine both activation energy and activation entropy has been used to evaluate gas-phase binding energies of host-guest (H-G) complexes of a heteroditopic hemicryptophane cage host (Zn(II)@1) with a series of biologically-relevant guests. In order to use this approach, preliminary calibration of the effective temperature of ions undergoing resonance excitation is required. This was accomplished by employing blackbody infrared radiative dissociation (BIRD) which allows direct measurement of activation parameters. Activation energies and pre-exponential factors were evaluated for more than 10 host-guest (H-G) complexes via the use of low-energy CID. The relatively long residence time of the ions inside the linear ion trap (maximum of 60 s) allowed the study of dissociations with rates below 1 s-1. This possibility, along with the large size of the investigated ions, ensures the fulfilment of rapid energy exchange (REX) conditions, and as a consequence, accurate application of the Arrhenius equation. Compared to the BIRD technique, low-energy CID allows access to higher effective temperatures, thereby permitting one to probe more endothermic decomposition pathways. Based on the measured activation parameters, guests bearing a phosphate (-OPO3 2-) functional group were found to bind more strongly with the encapsulating cage than those having a sulfonate (-SO3-) group; however, the latter ones make stronger bonds than those with a carboxylate (-CO2-) group. In addition, it was observed that the presence of trimethylammonium (-N(CH3)3 +) or phenyl groups in the guest's structure, improves the strength of host-guest interactions. The use of this technique is very straightforward, and it does not require any instrumental modifications. Thus, it can be applied to other H-G chemistry studies where comparison of bond dissociation energies is of paramount importance
    corecore