15 research outputs found

    Human Immunity and the Design of Multi-Component, Single Target Vaccines

    Get PDF
    BACKGROUND: Inclusion of multiple immunogens to target a single organism is a strategy being pursued for many experimental vaccines, especially where it is difficult to generate a strongly protective response from a single immunogen. Although there are many human vaccines that contain multiple defined immunogens, in almost every case each component targets a different pathogen. As a consequence, there is little practical experience for deciding where the increased complexity of vaccines with multiple defined immunogens vaccines targeting single pathogens will be justifiable. METHODOLOGY/PRINCIPAL FINDINGS: A mathematical model, with immunogenicity parameters derived from a database of human responses to established vaccines, was used to predict the increase in the efficacy and the proportion of the population protected resulting from addition of further immunogens. The gains depended on the relative protection and the range of responses in the population to each immunogen and also to the correlation of the responses between immunogens. In most scenarios modeled, the gain in overall efficacy obtained by adding more immunogens was comparable to gains obtained from a single immunogen through the use of better formulations or adjuvants. Multi-component single target vaccines were more effective at decreasing the proportion of poor responders than increasing the overall efficacy of the vaccine in a population. CONCLUSIONS/SIGNIFICANCE: Inclusion of limited number of antigens in a vaccine aimed at targeting a single organism will increase efficacy, but the gains are relatively modest and for a practical vaccine there are constraints that are likely to limit multi-component single target vaccines to a small number of key antigens. The model predicts that this type of vaccine will be most useful where the critical issue is the reduction in proportion of poor responders

    Relapse prevention for addictive behaviors

    Get PDF
    The Relapse Prevention (RP) model has been a mainstay of addictions theory and treatment since its introduction three decades ago. This paper provides an overview and update of RP for addictive behaviors with a focus on developments over the last decade (2000-2010). Major treatment outcome studies and meta-analyses are summarized, as are selected empirical findings relevant to the tenets of the RP model. Notable advances in RP in the last decade include the introduction of a reformulated cognitive-behavioral model of relapse, the application of advanced statistical methods to model relapse in large randomized trials, and the development of mindfulness-based relapse prevention. We also review the emergent literature on genetic correlates of relapse following pharmacological and behavioral treatments. The continued influence of RP is evidenced by its integration in most cognitive-behavioral substance use interventions. However, the tendency to subsume RP within other treatment modalities has posed a barrier to systematic evaluation of the RP model. Overall, RP remains an influential cognitive-behavioral framework that can inform both theoretical and clinical approaches to understanding and facilitating behavior change

    Vaccines based on the cell surface carbohydrates of pathogenic bacteria

    Full text link

    The axoneme: the propulsive engine of spermatozoa and cilia and associated ciliopathies leading to infertility

    No full text
    This review article provides a critical analysis of the structure and molecular mechanisms of the microtubule axoneme of cilia and sperm flagella and their associated elements required for male fertility. A broad range of genetic and molecular defects (ciliopathies) are considered in the context of human diseases involving impaired motility in cilia and sperm flagella, providing provocative thought for future research in the area of male infertility.Fil: Linck, Richard W.. University of Minnesota; Estados UnidosFil: Chemes, Hector Edgardo. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Parque Centenario. Centro de Investigaciones EndocrinolĂłgicas "Dr. CĂ©sar Bergada". Gobierno de la Ciudad de Buenos Aires. Centro de Investigaciones EndocrinolĂłgicas "Dr. CĂ©sar Bergada". FundaciĂłn de EndocrinologĂ­a Infantil. Centro de Investigaciones EndocrinolĂłgicas "Dr. CĂ©sar Bergada"; ArgentinaFil: Albertini, David F.. University of Arkansas for Medical Sciences; Estados Unido
    corecore