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SHORT PAPER Open Access

Correlation of CAG repeat length between the
maternal and paternal allele of the Huntingtin
gene: evidence for assortative mating
Peg Nopoulos1,2,3*, Eric A Epping1, Tom Wassink1, Bradley L Schlaggar4,5,6,7 and Joel Perlmutter4,6,7,8

Abstract

Triplet repeats contribute to normal variation in behavioral traits and when expanded, cause brain disorders. While
Huntington’s Disease is known to be caused by a CAG triplet repeat in the gene Huntingtin, the effect of CAG
repeats on brain function below disease threshold has not been studied. The current study shows a significant
correlation between the CAG repeat length of the maternal and paternal allele in the Huntingtin gene among
healthy subjects, suggesting assortative mating.

Introduction
Huntington’s Disease (HD) is a neurodegenerative disorder
caused by a triplet repeat expansion of the gene Huntingtin
(HTT, OMIM 613004). Triplet repeats are an example of
simple sequence repeats (SSRs) which are scattered
throughout the genome and can increase or decrease in
length between generations. Triplet repeats can be referred
to as ‘dynamic mutations’ and they make up a large class of
genomic variants that contribute to a wide variety of disor-
ders, mostly affecting the brain [1]. More importantly,
there is increasing evidence that dynamic mutations serve
important functions (namely regulation of gene expression)
and may play a substantial role in modulating brain devel-
opment and brain function [1-9]. For instance, SSRs are
particularly abundant in genes involved in brain develop-
ment and have been shown to contribute to normal varia-
tion in behavioral traits in animals and humans [3]. These
SSRs therefore may have provided the variability needed
for the changes of brain development and function in the
primate lineage leading to human evolution [4].
In sexually reproducing populations, mating does not

occur randomly, but in relationship to certain characteris-
tics - either with a positive correlation (a male pairs with a
similar female) or a negative correlation (a male pairs with
a dissimilar female). This phenomenon, termed assortative
mating, has been widely reported in humans with positive

correlations for characteristics such as intelligence [10,11],
body size [12-15] education [16], personality characteris-
tics [17-19] and mental disorders [20,21]. A recent review
outlined a number of human behaviors that are associated
with SSRs including anxiety related traits, novelty seeking
behavior, cognitive function, and altruism [3]. Therefore,
behaviors modified by SSRs may undergo assortative mat-
ing, as shown for the allelic variation of the dopamine
receptor D4 (DRD4) gene, an SSR associated with novelty
seeking behavior [22].
A better understanding of the function of HTT below

disease threshold may be important for understanding
the disease process of HD. For instance, if there is pheno-
typic variation in brain structure or function associated
with HTT CAG length below disease threshold, it may
help to define a possible spectrum of phenotype ranging
from normal to pathologic. This phenotypic spectrum
extends the concept of disease pathology beyond the clas-
sic dichotomous categorization between normal and dis-
eased brain. Furthermore, some literature supports the
notion of important relationships between the normal
HTT allele and the expanded allele, manifesting as differ-
ences in disease expression [23].
Although HTT has not directly been associated with

variance in behavior, it is critical for brain development
[24,25] and therefore may be associated with variance in
brain structure and function. We sought to evaluate the
possibility of assortative mating in a group of subjects
recruited from the community and with no family history
of Huntington’s.
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Methods
As a control group for a study on children at risk for
Huntington’s Disease, healthy children are recruited
from the surrounding community of our hospital via
advertising. Through a screening interview with parents,
children are excluded if they have a history of significant
medical neurologic, or psychiatric history. All partici-
pants signed informed consent prior to enrolling in the
protocol, which was approved by the local Investiga-
tional Review Board (IRB). Participants ages 6-12 years
signed both an assent form (language geared toward
children) and the consent form.
Several children who participated were siblings and to

avoid the confound of genetic relatedness, in the cases in
which there were 1 or more siblings, the participants were
randomly deleted and only 1 child from each family was
included. The demographics of the group included 47
healthy children, including 31 girls and 16 boys, ranging
from 6-18 years of age. A total of 40 of the 47 children
were Caucasian (85% of the sample), 4 were African
American (8.6%) and 3 were multiracial (6.4%).
Each child provided either blood or saliva for genetic

analysis. All analyses were done through the University of
Iowa Molecular Diagnostics Laboratory. Size of the CAG
repeat region of HTT on chromosome 4p16.3 was deter-
mined with PCR analysis of genomic DNA. PCR primers
that exclude the adjacent polymorphic CCG tract were
used to amplify the CAG region. A second set of primers
that includes the CCG polymorphism is routinely used to
assist in differentiating two alleles with an identical CAG
repeat number. The CAG repeat length for each subject is
determined by comparing the PCR products to sizing
standards. By convention, the longest allele is designated

as Allele1 and the shorter allele as Allele2. Parent DNA
was not available to determine maternal or paternal trans-
mission of each allele.

Statistical analysis
Normality of distribution of CAG lengths of both alleles
was tested using the Shapiro-Wilk test. If either allele
was found to be non-normally distributed, then non-
parametric analysis was used (Spearman Correlation) to
assess the association between length of Allele1 and
length of Allele2.

Results
Distribution of CAG repeat lengths were not normally
distributed. For Allele1, the range was from 15 to 30 with
mean of 20.20, s.d. of 3.88. Shapiro-Wilk statistic was sig-
nificant (0.873, p < 0.0001) indicating non-normality of
distribution. For Allele2, the range was 4 to 29, mean of
17.29 and s.d. of 3.67. Shapiro-Wilk statistic was signifi-
cant (0.848, p < 0.0001) again indicating a non-normal
distribution.
The Spearman correlation between Allele1 and Allele2

was highly significant at r = 0.511, p = 0.0002. This
observation confirms that longer Allele1 lengths are posi-
tively associated with longer Allele2 lengths. Figure 1
shows the scatter plot of the data with regression line
displayed.

Discussion
This simple analysis of a unique data set shows evidence
that there is assortative mating in regard to CAG length
of HTT. That is, the length of CAG repeat in the mater-
nal allele of HTT strongly correlates with the length of

Figure 1 Relationship between CAG repeat length of Allele1 and CAG repeat length of Allele2.
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the CAG repeat of the paternal allele of HTT, suggesting
that the male and female pair mated based on the com-
mon feature of having a similar genotype (length of
CAG repeat).
One interpretation of these findings would be that varia-

bility of CAG length is manifest by variation in phenotype
of brain structure and function. This notion supports a
report in which measures of mitochondrial energy meta-
bolism (ATP/ADP) directly correlated to HTT CAG
repeat lengths below disease threshold [26]. Although in
that study the genetic variation was associated with meta-
bolic phenotypic variation, brain structure/function phe-
notypic variation also may be associated with CAG repeat
length in HTT. As is seen with other SSRs, variation in
multiple types of behavior and cognitive functions have
been shown to be associated with variations in repeat sizes
of these genetic elements. With expansion of HTT CAG
repeat length beyond 36 repeats, disease is manifested and
the brain region most heavily affected is that of the basal
ganglia. Basal ganglia circuits include widespread connec-
tions from and to multiple cortical regions, including fron-
tal lobes. These frontal circuits influence numerous
complex functions including cognitive and personality
traits [27-32]. Potential influence of CAG repeat length on
these basal ganglia frontal circuits could influence beha-
viors that provide the basis for assortative mating.
An alternative explanation for the current findings

could be that a post-meiotic recombination between
CAG repeat domains of the two HTT alleles ‘equilibrate’
the 2 allele sizes, thereby producing a correlation
between the sizes of the HTT alleles [33]. To distinguish
whether the mechanism responsible for the reported cor-
relation is assortative mating or post-meiotic recombina-
tion, future studies will need to analyze parental DNA
along with the proband’s DNA.
Racial or ethnic relationships within the sample is an

important consideration in the current study since there
are differences in the distribution of normal HTT allele
sizes in different ethnic groups [34-38]. Furthermore, dif-
ferent haplotypes associated with different distribution of
the normal HTT allele sizes may influence the prevalence
of HD in certain regions of the world [39,40]. Therefore,
individuals choosing mates based on race or ethnicity may
explain our current findings of relationships consistent
with assortative mating. However, this explanation
requires that a substantial number of subjects represent
more than one racial or ethnic group. In the current sam-
ple, the vast majority (85%) are Caucasian with a small
numbers of African Americans (n = 4) or multiracial sub-
jects (n = 3). Moreover, if the correlation between the
ranks of Allele1 and Allele2 are calculated within the 40
Caucasians, the relationship remains significant (Spear-
man’s r = 0.408, p = 0.009). Thus, it seems unlikely that
the current findings represent assortative mating based on

ethnic group. Yet, recent reports of distribution of normal
HTT allele sizes suggest that the prevalence of modifier
genes may be different even among sub-groups of Cauca-
sians [40]. Again, this explanation requires multiple sub-
jects within several discreet sub-groups within this sample
of 40 Caucasians which, although possible, seems less
likely. Thus, assortative mating based not on ethnic group
but on some other human feature remains a viable expla-
nation for the findings reported here. Nevertheless, given
the preliminary nature of the findings, follow-up in larger
samples and further exploration of the functions of the
variance of normal CAG length in HTT are warranted.
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