Cost Analysis of Osprey C.R.E.W.

Abstract

Renewable energy adoption is on the rise in the U.S. and abroad. More than ever, energy sourcing needs to shift away from harmful fossil fuels and towards fully renewable energy sources. Adapting from traditional fossil fuel energy sources to renewable energy sources is paramount for environmental health and public health. Fossil fuels emit harmful pollutants, which have led to changing weather conditions and exasperated natural disasters. Existing renewable sources are not ideal, either. For instance, solar cannot run continuously and wind turbines are subject to weather changes. The recent energy debacle in Texas shows the need for alternative renewable energy sources. The Osprey C.R.E.W. wave energy converter (WEC) alleviates many of the current problems existing renewable energy systems cannot solve. First, it provides reliable and constant service. With other renewable energy services, there will be stops in production. However, there are no stops in wave energy because the waves are constant. Another positive of the WEC device is that their deployments are flexible and scalable. This means that energy production levels can be changed rapidly and without delay. The average cost per device falls significantly with seamless scalability, making large increments of devices procured in a relatively cost-effective manner. Cost comparisons between competing energy sources show that the WEC is very cost-efficient as well. The cost of producing wave energy is found to be more efficient than solar energy and wind alternatives. Our cost figures also show that Osprey C.R.E.W provides a very competitive alternative to the primary fossil fuel producers such as coal and fuel

    Similar works